基于可达集的无人机低空飞行冲突解脱算法_杨建航.pdf
《基于可达集的无人机低空飞行冲突解脱算法_杨建航.pdf》由会员分享,可在线阅读,更多相关《基于可达集的无人机低空飞行冲突解脱算法_杨建航.pdf(15页珍藏版)》请在咨信网上搜索。
1、http:/DOI:10.13700/j.bh.1001-5965.2021.0542基于可达集的无人机低空飞行冲突解脱算法杨建航1,2,张福彪1,2,*,王江1,2(1.北京理工大学宇航学院,北京100081;2.无人机自主控制技术北京重点实验室,北京100081)摘要:针对无人空中交通管理(UTM)中的冲突解脱问题,提出了以可达集分析为基础的实时避撞算法。该算法可用于城市低空环境中的密集交通流空域,保证无人机(UAV)飞行过程的安全性。基于相对运动的概念,通过分析平面空域中的飞行博弈问题对避撞系统进行建模,同时利用水平集方法和最优控制理论对无人机的可达集进行分析和计算,使用机载传感器获取无
2、人机与周围物体的信息,为每架无人机提供新的避撞策略。通过 3 种不同空域环境的飞行案例进行仿真实验,验证了该策略不仅可以得到平滑的飞行路径,实时安全地解决冲突解脱问题,而且针对合作/非合作目标均有效。关键词:无人空中交通管理;冲突解脱;城市低空环境;可达集分析;避撞策略;平面空域中图分类号:V221+.3;TB553文献标志码:A文章编号:1001-5965(2023)07-1813-15人们对移动性日益增长的需求对传统的交通方式和交通系统提出了挑战。人们期望以更快捷、更舒适的方式到达目的地,并期望在有需要 后 的 短 时 间 内 完 成 移 动 性 任 务。无 人 机(unmannedair
3、craftvehicles,UAV)体 积 小、灵 活、可低空飞行且能够携带一套复杂的机载传感器,正在成为当今社会不可缺少的工具1。用于监视和侦察等军事应用的无人机系统(unmannedaircraftsystem,UAS)的部署早已非常成熟,最近由于其操作简单、低空空域开放等特点而被广泛应用于各种民用任务中2,主要包括应急搜索和救援、执法、精准农业、包裹递送、基础设施检查及灾害探测等3。随着民用 UAS 的迅速发展,解决无人机在国家空域系统运行的安全问题越来越关键,无人机必须以不干扰交通的方式行动,保持与其他飞机分离。无论在商业航空的结构化空域,还是在拥有都市型航空交通系统(urbanair
4、mobility,UAM)的低空空域,空中交通都变得越来越复杂且难以管理。在过去的 50 年里,有人驾驶和无人驾驶飞机数量的急剧增加给空中交通管理(airtrafficmanagement,ATM)带来了严峻的考验4。无人机需要一定程度的自主权,以确保在复杂环境中安全分离。为此,NASA 在 2015 年提 出 了 无 人 空 中 交 通 管 理(unmannedairtrafficmanagement,UTM)系统的概念5。与传统的 ATM相比,UTM 旨在更严格、更拥挤的空域中管理更多的飞机。UTM 有许多组成部分,本文主要关注冲突解脱问题,因为其对空中交通的安全性十分重要。据统计,自 2
5、006 年以来,质量小于 30kg 的小型无人机系统(sUAS)占据了新型飞机的大部分市场6。随着现代技术的快速进步及无人机成本的大幅降低,预计未来几年低空空中交通流量将大幅增长7,越来越多的无人机行动将会发生在靠近建收稿日期:2021-09-09;录用日期:2021-12-17;网络出版时间:2022-01-1212:44网络出版地址: J.北京航空航天大学学报,2023,49(7):1813-1827.YANG J H,ZHANG F B,WANG J.Conflict resolution algorithms for UAV low-altitude flight based on r
6、eachable setJ.Journal of BeijingUniversity of Aeronautics and Astronautics,2023,49(7):1813-1827(in Chinese).2023年7月北京航空航天大学学报July2023第49卷第7期JournalofBeijingUniversityofAeronauticsandAstronauticsVol.49No.7筑物或机场的大都市地区8。大都市环境的空域将由传统的载人飞行器和无人机共享,低空空域密集的操作环境大大增加了冲突的风险。在低空的城市地区,每架无人机必须避开各种障碍,如静态物体(高层建筑、树木
7、、灯柱、禁飞区等)和动态物体(起重机、其他无人机、有人机等)。为此,需要先进的 UTM 系统有效处理复杂环境中的飞行冲突,及时保证安全9。ATM 主要关注的是事先计划好的机场之间的航班,这些航班的时间表能够预先得知。相比之下,UAS 具有时间和空间上的高度不确定性,无人机可以在任意时段飞行,且没有固定的路径点。此外,目前的ATM 系统是“人在回路”的决策系统,人因误差无法避免,不利于飞行冲突的解决10,在无人驾驶的航空领域,无人机将进行多次短途飞行,需要更高水平的自动化来解决冲突11。因此,需要先进的冲突解脱工具和决策方法来管理 UTM 下涌入的大量 UAS。冲突指 2 架飞行器之间的距离小于
8、特定的间隔,使飞行器安全受到威胁的一种状态。冲突探测与解脱是 UTM 系统的核心任务之一12,无人飞行器检测到可能发生的冲突后,通过安全避撞操作来解决现有的冲突威胁。目前,检测-避撞(detect-and-avoid,DAA)技术已经有了多年的研究4,并进行了开发和测试工作。文献 13 以复杂网络理论为基础,通过冲突 DAA 策略来解决局部空域冲突解脱的问题,文献 14 提供了无人机进入非隔离空域的DAA 解决方案,文献 15 描述了 DAA 系统在复杂的城市环境中对小型无人机机动的需求,文献 16介绍了 DAA 系统冲突探测的应用。本文基于可达集方法和 DAA 技术,提出一种新的 UAS 避
9、撞策略,为 UTM 中的冲突解脱问题提供了一种安全有效的方法。避撞能力是决定无人机能否与其他飞行器共享空域,以及能否在动态不确定环境中执行任务的重要因素17。相关文献提出了多种解决无人机避撞问题的算法。Kuchar 和 Yang18对 2021 世纪的冲突解脱算法进行了全面的回顾与评估,并对无人机避撞模型包含的概念进行了分类。文献 19-20分析和评估了各种无人机自主防撞避让算法。以主成分分析(principalcomponentanalysis,PCA)算法21为代表的几何算法考虑了无人机与障碍物的空间位置,计算简单,但通常无法得到平滑的飞行路径。基于概率和统计理论的蒙特卡罗算法22主要针对
10、一对无人机之间的避撞问题,未考虑复杂的多机空域。人工势场法23的优点在于计算量小,具备防撞的实时性,但存在局部最优点的问题,不能准确到达目标。同时,解决无人机防撞问题的方法还有各类基于人工智能的避撞决策算法,包括 A*搜索算法24和各种优化算法,如遗传算法25、蚁群算法26、粒子群优化算法27等。这类优化算法可以进行全局搜索,规划出最优或次优路径,但计算时需要多次迭代,较大的计算量导致规避障碍物时会出现延迟问题,而且适用范围较小,大多只能用于躲避静态障碍物,对于动态物体不能进行有效避撞。文献 28 利用可达集进行避撞检查,提高了避撞的成功率和安全性,但仍需预测轨迹,并且需要提前掌握障碍物的可达
11、集信息,无法实现实时避障。此外,在复杂的城市环境中,障碍物密集,碰撞危险性高。因此,传统的路径规划算法在低空环境的应用具有局限性。上述针对城市环境的 UAS 避撞算法主要侧重于预先规划,要求 UAS 的飞行环境是透明的。对于陌生的任务环境,难以掌握 UAS 的全局飞行区域信息,无法提前通过规划算法获得安全的飞行路径29,执行效率会受到影响。因此,有必要探索一种实时的冲突解脱算法,应用于复杂的低空飞行空域。本文提出的基于可达集的实时避撞算法具有简洁、高效、安全、实用等特点。飞机间的相互作用可以通过计算重要的空中交通特征(如相对位置和相对速度)来进行数学描述。为了避免碰撞,本文采用 2 种方式实现
12、飞机的分离,即航向角变化(headinganglechange,HAC)和 速 度 变 化(velocitychange,VC)。假设无人机定高飞行,使用无人机的当前位置、速度及航向信息,基于相对运动的概念处理平面空域冲突问题。由于可达集的计算结果可以离线缓存,在规避障碍物时具有较小的计算开销,保证了实时性。提取时给定一个误差界,使可达集边界的允许误差有一个限度。采用 2 架飞机博弈的过程对空中避撞问题进行建模,通过可达集分析方法对无人机加以控制,从而完成空中交通避撞任务。1背景知识1.1可达集随着空中交通系统越来越复杂,确保系统正常工作也越来越困难,因此,安全验证已应用到多种工程领域。安全验
13、证的最简单形式是仿真,但其一次只能检查系统的一条轨迹,通过该方法检查每个可能的系统轨迹安全性的代价是十分昂贵的。因此,在控制系统的安全验证中,可达集分析方法应运而生。如果可以准确确定一组1814北 京 航 空 航 天 大 学 学 报2023年状态集合,系统步入此状态集合会导致危险程度剧增,则可以通过确保系统状态不属于此状态集合来验证系统的安全性。考虑民用航空交通管制中无人机之间的避撞,若要保证设计的控制方法不会让 2 架无人机陷入碰撞损失,可达集分析是完成此任务的合适工具。根据指定初始条件或终端条件,可达集分为前向可达集(forwardreachableset,FRS)和后向可达集(backw
14、ardreachableset,BRS)。对于 FRS,指定初始条件,并确定沿开始的轨迹可以到达的所有状态的集合;相反,对于 BRS,指定终端条件或目标集,并试图确定可到达该目标集的所有轨迹的状态集合。2 种可达集如图 1 所示30。BRSFRS目标集初始集图1前向可达集与后向可达集30Fig.1Forwardreachablesetandbackwardreachableset301.2FRS 与 BRS 对比FRS 是系统在某个时间段 t 之后可能处于的状态集合。当 2 架飞机同时飞行时,为其中一架飞机(飞机)计算 FRS,并且另一架飞机(飞机)试图避免进入此集合以确保产生无碰撞轨迹,如图
15、 2(a)所示。但是,这种集合从飞机的初始状态随时间t 向外扩张,使得飞机的飞行路线过于保守,导致飞机的可飞行区域大大减少。为减少这种过度保守性,计算 FRS 时通常要使时间范围 t 保持很小,并经常对其进行重新计算。这种方法在寻找避撞轨迹方面是有效的,但很难应用到存在更多不确定性的低空环境中。此外,使用 FRS 的另一缺点是安全性取决于飞机的能力和操作频率,即使FRS 实时计算,飞机仍有可能无法对瞬间威胁做出反应31。为研究飞机的避撞问题,令目标集表示系统的碰撞状态集合。BRS 是一组状态集合,这组集合在某个时间段 t 之后可能使系统状态处于目标集合中。FRS 和 BRS 之间的关键区别在于
16、:BRS 在时间上是向后计算的,是围绕在飞机目标集附近的封闭集合,该集合表示在控制约束下,能够到达碰撞状态的当前时刻所有状态的集合,如图 2(b)所示。对于 2 架飞机的动力学系统,BRS 的计算使得飞机能在任何时间和任何状态下做出反应(如果 2 架飞机相互靠近,则飞机可以快速转向,远离飞机以避免碰撞)。简而言之,BRS 不像 FRS 那样过于保守。BRS 的计算结果可以离线缓存,在运行时,可以通过实时查找缓存可达集来计算 UAV 的最佳飞行策略。空中交通安全管理问题的研究中使用 BRS,原因有如下 3 点:1)以目标集为导向的封闭集合的计算可确保无人机仅在必要时才使用可达集工具,而不会过度影
17、响无人机的预定轨迹。2)BRS 的计算中本质上已经定义了无人机的安全性,而 FRS 方法的安全性取决于无人机的预定轨迹是否与 FRS 相交。3)BRS 为安全控制提供了较强的计算能力,可以在高操作频率下对安全控制进行评估,从而应对瞬间威胁。2模型与算法2.1BRS 计算2.1.1系统建模使用常微分方程对系统进行建模:dx(t)dt=x(t)=f(x(t),u(t),d(t)x(tf)Tf,t ,tf(1)x(t)Rnu(t)Ud(t)DtfTf=x Rn|T(x)0udf()xT()x()式中:为系统的状态变量;为控制量;为扰动量;为某一时刻;为终端时刻;为系统的目标集。对于固定的和,假设系统
18、动力学在 上是一致连续的、有界的,且利普希茨连续的,则后向可达集被定义为在 时刻所有状态的集合,该集合满足以下要飞机飞机全局坐标系FRS(开环安全)飞机飞机相对坐标系BRS(闭环安全)(b)无人机后向可达集(a)无人机前向可达集图2无人机前后向可达集确保安全方式Fig.2FRSandBRSensuresafetymeasures第7期杨建航,等:基于可达集的无人机低空飞行冲突解脱算法1815Tfd(t)D(t tf)u(t)U(t tf)x()x(tf)Tf求:在给定上述系统的目标集的条件下,对任意干扰输入,都存在一个控制输入,使得状态沿着满足上述动力学的轨迹可到达的状态。f()u(t)d(t
19、)Tf在飞机避撞问题中,表示 2 架飞机之间或飞机与障碍物之间的相对动力学,表示飞机的控制输入,表示飞机的控制输入(飞机可用来表示障碍物,其运动输入为干扰输入),表示 2 架飞机碰撞或飞机与障碍物碰撞时对应的状态集合。2.1.2水平集方法xt(x,t)x=x1,x2,xn Rnxt(x,t)(x,t)Ptx P(x,t)0水平集(levelset)是一种用于计算动态隐式集合描述的数值方法,其基本思想是:将 N 维问题描述成 N+1 维问题的一个水平集,即将某状态的 集 合 看 成 高 一 维 空 间 处 于 时 刻 的 隐 函 数的零水平集,其中,由此将求解 和 描述的演化过程转换为求解的一个
20、水平集的演化过程。为水平集函数,为限制区域,则 时刻等价于,如图 3所示32。P边界:P(x,t)0(x,t)0图3水平集方法的图示32Fig.3Illustrationoflevelsetmethod32f(x)Ptf(x)(x,t)=0 x(x,t)f(x)假设界面上每个点的速度由外部生成的速度场给出,若要分析集合边界随时间 在速度场中的变化,则只需要计算使得成立的。和存在以下关系:t(x,t)+f(x)(x,t)=0(2)此即哈密顿-雅可比偏微分方程(HJPDE),也称为水平集方程。这种方法能够计算演化中的曲线而不需对曲线参数化,Osher 和 Fedkiw33提供了有关动态隐式曲面和水
21、平集方法的入门指导。目前,该方法已十分成熟,并得到了广泛使用。(x,t)令连续、有界的隐函数是 HJPDE 的黏性解,则系统的 HJPDE 表示如下:t(x,t)+H(x,x(x,t)=0(3)p=x(x,t)令,若系统的目标是提高安全性,则哈密顿量为H(x,p)=maxuUmindDpTf(x,u,d)(4)(x,t)(x,t)(x,t)u(x,t)文献 30,34 及相关文献中证明黏性解是式(3)和式(4)的正确弱解,用来生成可达集的隐式曲面。因此,计算的精确近似值时可以使用水平集文献中成熟的数值方法。黏性解可用于创建安全控制区域:如果系统状态在可达集之外,则输入 的任何控制策略都是安全的
22、35。为避免系统进入危险状态,使用中的相对距离和相对转角信息,在系统接近边界时逐渐引入相关控制量。2.1.32 架飞机系统动力学rsafersafe本节研究 2 架相同飞机在平面空域中运动的博弈问题。根据文献 36 的理论研究三维飞机的防撞示例,确定 2 架飞机运动学模型的可达性。为方便分析,每架飞机都被建模为具有可变的平面位置和航向、固定的线速度大小及可控制的角速度输入的简单运动对象,如图 4 所示。在冲突解脱问题中,通过飞行器之间的距离与碰撞半径相比较来确定安全程度,小于将发生碰撞。飞机试图通过合适的输入进入飞机的碰撞区域(见图 4中实线圆),因此,需要确定飞机能够进入飞机碰撞区域的集合,
23、即飞机的可达集。vvx3x1x2dursafe飞机飞机图42 架飞机相对运动系统模型Fig.4Twoaircraftrelativemotionsystemmodel将飞机固定在原点,则系统动力学描述为 x=ddtx1x2x3=v+vcos x3+ux2v2sin x3ux1du=f(x,u,d)(5)x1x2T R2x3 0,2式中:为 2 架飞机在平面内的相对位置;为 2 架飞机航向的相对转角;v和 v分别为飞机和飞机的线速度。Tfduu U=Umax,+Umaxd D=Dmax,目标集是一组危险的系统状态,系统动力学中的输入参数分为 2 部分:试图进入目标集的输入和试图避免其进入目标集的
24、输入。其中,为飞机的输入角速度,1816北 京 航 空 航 天 大 学 学 报2023年+DmaxTfx1x2rsafe为飞机的输入角速度。由于 2 架飞机可以在任意相对航向上发生碰撞,目标集只取决于2 架飞机的相对位置和,包含以原点为中心、为半径的圆内任意状态:Tf=x R20,2x21+x22 rsafe(6)2.1.4最优控制和可达集数值解结合式(4)和式(5),可以得出哈密顿量为H(x,p)=maxuUmindD(pTf(x,u,d)=maxuUmindD(p1v+p1vcos x3+p2vsin x3+(p1x2 p2x1 p3)u+p3d)(7)pi=xi(x,t),i=1,2,3
25、式中:。通过最优控制理论解出37:u=Umaxsign(p1x2 p2x1 p3)(8)d=Dmaxsign(p3)(9)将式(8)和式(9)代入式(7)中,得到最优哈密顿算子:H(x,p)=pIv+p1vcos x3+p2vIIsin x3+Umax|p1x2 p2x1 p3|Dmax|p3|(10)(x,t)(x,t)=0根据式(10)和式(3)得出 2 架飞机避撞系统的 HJPDE,从 而 求 得的 近 似 数 值 解。令,即可得零水平集下随时间变化的飞机可达集。rsafe=5,m v=v=5Umax=Dmax=1图 5(a)展示了目标集,图 5(b)图 5(d)展示了不同视野下 2.8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 可达集 无人机 低空飞行 冲突 解脱 算法 杨建航
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。