不确定环境下的期权定价模型.doc
《不确定环境下的期权定价模型.doc》由会员分享,可在线阅读,更多相关《不确定环境下的期权定价模型.doc(9页珍藏版)》请在咨信网上搜索。
1、Knight不确定环境下的期权定价模型OPTION PRICING UNDER KNIGHTIAN UNCERTAINTY周娟1 韩立岩2 韩立岩,北京航空航天大学经济管理学院教授、博士生导师。主要研究方向:宏观经济学和金融投资学,通讯地址:北京航空航天大学经济管理学院,100083;周娟,北京航空航天大学管理科学与工程专业博士研究生,主要研究方向:金融资产定价理论;郑承利,北京大学深圳研究生院博士后,主要研究方向:金融工程。 郑承利3 摘要:传统的金融学主要研究的是投资个体在风险环境中投资组合选择和资产定价问题。而knight不确定性与风险是有区别的。风险(risk)是概率分布唯一存在的、在
2、数量上可确定的、封闭和完备的那种不确定性,而Knight不确定性则是指不具有这些性质的、易受“潜在意外”和新事物影响而经常变化的不确定性,这种不确定性不能被单一概率所揭示。Ellsberg悖论指出Knight不确定性的存在确实会影响当事人的选择行为。Knight不确定环境下的基础资产定价已经取得重大突破(Epstein, 1994)。本文此基础上提出Knight不确定环境下的期权定价方法,为衍生金融工具的定价提供一条新思路。本文利用-模糊测度和Choquet积分来导出Knight不确定环境下欧式无红利期权的价格表示。认为在knight环境下期权的价格是一个区间而不是某个特定得值。该种方法在金融
3、经济学领域有着广泛的使用前景。关键词:Knight不确定性,期权定价,-模糊测度,Choquet积分1. 引言主流的资产定价理论,包括被Cochrane(2001)认为是金融资产定价的两根“支柱”的均衡定价理论和套利定价理论,总是假定投资者不但清楚地知道未来可能出现哪些不确定性状态,而且能够对其发生的概率做出估计这些估计至少在投资者看来是可靠的,他们正是在此基础上进行选择或决策。这种处理外部不确定环境的手法是从经济学那里承袭来的,新古典学派的理性经济人模型等经济学研究都普遍使用该方法。事实上,面对充满了不确定因素的金融市场,这个假定是有局限性的。Knight(1921) 和Keynes(192
4、1) 在不同场景下对于风险和不确定性都作了相同的辨析,指出了可知的不确定性(风险)和不可知的不确定性(真正的不确定性)的本质差异。其后的研究者常常将“真正”的不确定性称为“Knight不确定性(Knightian uncertainty)”或“不明确性(ambiguity)”,并在模型研究中将风险(risk)限定为概率分布唯一存在的、在数量上可确定的、封闭和完备的那种不确定性,而设定Knight不确定性为不具有这些性质的、易受“潜在意外”和新事物影响而经常变化的不确定性。Knight不确定性的本质并非“未知”而是不可知,处理未知可以使用贝叶斯方法,而处理不可知则需要完全不同的方法。Ellsbe
5、rg(1961) 基于实验提出了著名的Ellsberg悖论,指出Knight不确定性的存在确实会影响当事人的选择行为,这种行为无法用单一概率测度的观点加以解释。因为这里的概率测度不但违背了著名的Von Neumann-Morgenstern公理系统,甚至违背Savage(1954) 提出的主观概率存在的公理体系,而这些体系是主流经济学和金融学讨论风险决策时所必须遵循的基本原则。由Ellsberg悖论引发了大量实证研究,其中既有基于实验的也有基于市场的,这些内容在Camerer and Weber(1992)中有很好的综述。由于利息过程和红利过程都面临Knight不确定性(Papamarcou
6、and Fine(1991)、Barsky and Delong(1992)),因此资产定价研究也需要考虑Knight不确定性。通过研究Knight不确定性,金融市场一些现存的“谜”,例如价格突变、资产收益率的超额波动性、经纪商的买卖差价、期权平价公式的背离以及投资组合惯性等,都能得到较好地解释(Basili(2001))。Miao and Wang(2004) 甚至发现Knight不确定性会影响美式期权执行时间的决定。Epstein and Wang(1994) 将Lucas无限期经济人代表模型扩展到Knight不确定环境下,讨论了证券的均衡定价问题。其中经济人代表的信念被描述成一个概率测度
7、集合,并在此基础上导出连续均衡价格过程,发现均衡价格有不唯一的可能性,证明了同时存在的多个均衡价格必然分布在同一个连通闭集内的结论,并在此基础上很好地解释了超额波动现象。 Epstein and Wang(1995) 进一步放宽了上述条件,允许不连续均衡价格在一定范围内存在,解释了外界条件没有发生显著变化时证券价格也可能发生突变的奇异现象。Epstein and Chen(2002) 还将上述模型扩展到连续时间场合,同样得到了类似的结论。 文献调研表明,资产定价研究中的Knight不确定性已经为越来越多的研究者所重视,在基础资产定价领域已经取得突破,衍生资产定价研究的大门也正在开启。尽管已经出
8、现了一些触及Knight环境下衍生产品定价问题的研究,例如Mceneaney(1997) 用稳健性控制方法给完全市场中只考虑风险的环境下的期权进行定价,得出了与传统的B-S公式相一致的结果;郑承利(2003) 采用基于非可加测度的模糊期权定价方法对市政债券发债规模控制进行了实证研究;Miao and Wang(2004)关于Knight不确定性对美式期权执行时间决定的影响的理论研究等,但是都尚未深入。然而在一个完整的资产定价体系中,衍生产品定价是不可或缺的基本组成部分,所以有必要系统地研究Knight不确定性环境下期权定价的理论和方法。本文旨在提出一种基于Knight不确定环境下的期权定价方法
9、。2. 用-模糊测度表征Knight不确定性环境下投资者个体的信念用来描述Knight不确定性下的个体信念迄今为止有两种方法,其一是以Epstein and Wang(1994,1995)为代表的多先验概率模型。个体的期望效用表示为。未来的不明确性用一族概率测度来表述,P()就是这样的一个概率测度族。它表示如果现在的状态是,则P()包含了将来出现各个状态的概率的所有可能值m。值得注意的是P()中的元素m是一个定义在(,)上的概率测度,而不是某个特殊状态的概率值。它实际上是选取得所有概率测度下的最小的期望值。另一种表达信念的方法是以Chateauneuf(1991)等为代表的用一个非可加测度(容
10、度)和基于非可加测度的Choquet积分来表征个体的效用评价,并且指出了在满足某些条件的前提下,两种方式是等价的。本文遵循着后一种方法,即用一个非可加测度来表征个体效用。在这里我们使用一种特殊的非可加测度,即-模糊测度来表示Knight不确定环境下的投资人信念。令为自然状态空间,为的子集所构成的-代数。定义1:一个定义在上的实值集函数是一个容度,如果它满足:(a) ()=0,()=1(b) 单调性,即A、B,若AB,则(A)(B)。进一步地,若还满足A、B,有(AB)+ (AB)(A)+(B),则称是凸容度;若(AB)+ (AB) (A)+(B),则称是凹容度。显然容度不满足可加性。定义2:对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不确定 环境 期权 定价 模型
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【caop****ing】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【caop****ing】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。