异面直线所成的角的求法(课堂PPT).ppt
《异面直线所成的角的求法(课堂PPT).ppt》由会员分享,可在线阅读,更多相关《异面直线所成的角的求法(课堂PPT).ppt(42页珍藏版)》请在咨信网上搜索。
2.1.2 空间中直线与直线空间中直线与直线之间的位置关系之间的位置关系习题课习题课1问题一:异面直线的判定问题一:异面直线的判定2例例1.已已知知m、n为为异异面面直直线线,m平平面面,n平平面面,l,则,则l()A与与m、n都相交都相交B与与m、n中至少一条相交中至少一条相交C与与m、n都不相交都不相交D与与m、n中的一条直线相交中的一条直线相交3例例2.已已知知点点P、Q、R、S分分别别是是正正方方体体的的四四条条棱棱的的中中点点,则则直直线线PQ与与RS是是异异面直线的一个图是面直线的一个图是()4例例3如如图图,已已知知a,b,c,baA,ca,求求证证:b与与c是是异异面面直线直线5异面直线的证明异面直线的证明:(1)反证法,假设两直线共面,随后导出矛反证法,假设两直线共面,随后导出矛盾,故两直线异面盾,故两直线异面(2)过平面外一点与平面内一点的直线和平过平面外一点与平面内一点的直线和平面内不过该点的直线是异面直线面内不过该点的直线是异面直线(异面直线异面直线判定定理判定定理)7问题二:求异面直线所成的角问题二:求异面直线所成的角8预备知识预备知识角的知识角的知识正弦定理正弦定理a=2RsinA a=2RsinAS ABC=bc sinA余弦定理余弦定理ABCbcacosA=ABCbca9二、数学思想、方法、步骤:二、数学思想、方法、步骤:解决空间角的问题涉及的数学思想主要是解决空间角的问题涉及的数学思想主要是化归化归与转化与转化,即把空间的角转化为平面的角,进而转化,即把空间的角转化为平面的角,进而转化为三角形的内角,然后通过解三角形求得。为三角形的内角,然后通过解三角形求得。2.2.方法:方法:3.3.步骤:步骤:求异面直线所成的角:求异面直线所成的角:作(找)证 点 算1.1.数学思想:数学思想:平移平移 构造可解三角形构造可解三角形10例例4 4.在正方体在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,棱长为棱长为4 4 (1)(1)求直线求直线BABA1 1和和CCCC1 1所成的角的大小所成的角的大小 (2)(2)若若M M,N N分别为棱分别为棱A A1 1B B1 1和和B B1 1B B的中点,的中点,求直线求直线AMAM与与CNCN所成的角的余弦值所成的角的余弦值.A A1 1B B1 1C C1 1D D1 1A AB BC CD DMNPQBQ=1BN=2QN=QC=NC=CosQNC=11 例例 5、在正方体在正方体ABCD-ABCD中,棱长为中,棱长为a,E、F分别是棱分别是棱AB,BC的中点,求:的中点,求:异面直线异面直线 AD与与 EF所成角的大小;所成角的大小;异面直线异面直线 BC与与 EF所成角的大小;所成角的大小;异面直线异面直线 BD与与 EF所成角的所成角的大小大小.12异面直线异面直线 BC与与 EF所成角的大小;所成角的大小;13OGAC AC EF,OG BDBD 与与EF所成的角所成的角即为即为AC与与OG所成的角所成的角,即为即为 AOG或其补角或其补角.平移法平移法补形法补形法14例例6空间四边形空间四边形SABC中,中,SA=SB=SC=AB=BC=CA,E、F分别是分别是SA、BC中点,则异面直线中点,则异面直线EF与与SC所所成的角成的角90015S S是正是正ABCABC所在平面外一点,所在平面外一点,SA=SB=SCSA=SB=SC且且ASB=BSC=CSA=90ASB=BSC=CSA=90,M M,N N分别是分别是ABAB和和SCSC的中点,求异面直线的中点,求异面直线SMSM与与BNBN所成的角。所成的角。ASBCMNP PMABCPNPBaaa例例例例7 7 7 7.16三三例例8.17例9如图,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为_20 例、10由四个全等的等边三角形围成的封闭几何体称为正四面体如图,正四面体ABCD中,E、F分别是棱BC、AD的中点,CF与DE是一对异面直线,在图形中适当的选取一点作出异面直线CF、DE的平行线,找出异面直线CF与DE所成的角22解析思路1:选取平面ACD,该平面有以下两个特点:该平面包含直线CF,该平面与DE相交于点D,伸展平面ACD,在该平面中,过点D作DMCF交AC的延长线于M,连结EM.可以看出:DE与DM所成的角,即为异面直线DE与CF所成的角如图1.23思路2:选取平面BCF,该平面有以下两个特点:该平面包含直线CF,该平面与DE相交于点E.在平面BCF中,过点E作CF的平行线交BF于点N,连结ND,可以看出:EN与ED所成的角,即为异面直线FC与ED所成的角如图2.思路3:选取平面ADE,该平面有如下两个特点:该平面包含直线DE,该平面与CF相交于点F.在平面ADE中,过点F作FGDE,与AE相交于点G,连结CG,可以看出:FG与FC所成的角,即为异面直线CF与DE所成的角如图3.2425思路4:选取平面BCD,该平面有如下特点:该平面包含直线DE,该平面与CF相交于点C,伸展平面BCD,在该平面内过点C作CKDE与BD的延长线交于点K,且DKBD,连结FK,则CF与CK所成的角,即为异面直线CF与DE所成的角如图4.26总结评述:(1)上面四个思路的共同点是:由两条异面直线中的一条与另一条上一个点确定一个平面,在该平面内过该点作该直线的平行线,从而找出两条异面直线所成的角,这是立体几何“化异为共”“降维”的基本思想27(2)求两条异面直线所成角的关键是作出这两条异面直线所成的角,作两条异面直线所成的角的方法是:将其中一条平移到某个位置使其与另一条相交或是将两条异面直线同时平移到某个位置使它们相交,然后在同一平面内求相交直线所成的角值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置一般提倡像思路2、思路3那样作角,因为此角在几何体内部,易求28(3)找出异面直线所成的角后求角的大小一般要归到一个三角形中,通过解三角形求出角的大小,如本题思路1中可归结为解DEM.思路2中可归结为解DEN等等,由于本例中三角形是斜三角形,待我们学过解斜三角形后,即可计算(4)实际问题中,若含有“中点”“比例点”常利用中位线,比例线段进行平移2910A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。ABCDEFG解:连结DF,取DF的中点G,连结EG,CG,又E是AD的中点,故EG/AF,所以GEC(或其补角)是异面直线AF、CE所成的角。异面直线AF、CE所成角的余弦值是 3011A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。ABCDEFP另解另解:延长DC至P,使DC=CP,E为AD中点,AP/EC。故PAF(或其补角)为异面直线AF、CE所成的角。异面直线AF、CE所成角的余弦值是 31练 习 1:如 图,P为 ABC所 在 平 面 外 一 点,PCAB,PC=AB=2,E、F分别为PA和BC的中点。(1)求证:EF与PC为异面直线;(2)求EF与PC所成的角;(3)求线段EF的长。ABCPEF假设EF与PC不是异面直线,则EF与PC共面由题意可知其平面为PBC这与已知P为ABC所在平面外一点矛盾32PABCMN12、空间四边形、空间四边形P-ABC中,中,M,N分别分别是是PB,AC的中点,的中点,PA=BC=4,MN=3,求,求PA与与BC所成的所成的角?角?E33ADCBA1D1C1B1变题变题:已知正方体已知正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,棱长为中,棱长为a.a.O O为底面中心,为底面中心,F F为为DDDD1 1中点中点E E在在A A1 1B B1 1上上,求求AFAF与与OEOE所所成的角成的角OEFN34ADCBA1D1C1B12 2、若、若M M为为A A1 1B B1 1的中点,的中点,N N为为BBBB1 1的中点,的中点,求异面直线求异面直线AMAM与与CNCN所成的角;所成的角;NMFE35例例14、如图,在三棱锥如图,在三棱锥DABC中,中,DA 平面平面ABC,ACB=90,ABD=30,AC=BC,求异面,求异面直线直线AB 与与CD所成的角的余弦值。所成的角的余弦值。ABCD36四面体四面体ABCD的棱的棱长均为长均为a,E,F分别分别为棱为棱BC,AD的中点,的中点,(1)求异面直线)求异面直线CF和和BD所成的角的余所成的角的余弦值。弦值。(2)求)求CF与与DE所所成的角。成的角。思考题ABCDEFPQ37异面直线所成的角的求法异面直线所成的角的求法:典例剖析例1:如图正方体AC1,求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 D1D1CB1A1ADD1BC1分析 1、做异面直线的平行线 2、说明哪个角就是所求角 3、把角放到平面图形中求解 解:CC1/BB1 AB1和BB1所成的锐角是异面直线AB1和CC1所成的角 在ABB1中,AB1和BB1所成的角是450 异面直线AB1和CC1所成的角是450。38异面直线所成的角的求法异面直线所成的角的求法:典例剖析例1:如图正方体AC1,求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 D1D1CB1A1ADD1BC1分析 1、做异面直线的平行线 2、说明哪个角就是所求角 3、把角放到平面图形中求解 在面A1B1CD中,A1B1 CD A1D/B1C AB1和B1C所成的锐角是异面直线AB1和A1D所成的角 在AB1C中,AB1和CC1所成的角是600 异面直线AB1和A1D所成的角是600。39DB1A1D1C1ACBDB1A1D1C1ACBDB1A1D1C1ACB正方体正方体ABCD-A1B1C1D1中中,P为为 BB1的中点的中点,如图画出下面各题中指定的异面直线如图画出下面各题中指定的异面直线P异面直线所成的角是锐角或直角,当三角形内角是钝角时,异面直线所成的角是锐角或直角,当三角形内角是钝角时,表示异面直线表示异面直线所成的角是它的补角所成的角是它的补角.40DB1A1D1C1ACB以第三幅图为例,设正方体的棱长为1,求异面直线的夹角FE1EF1如图,补一个与原正方体全等的并与原正方体有公共面的正方体如图,补一个与原正方体全等的并与原正方体有公共面的正方体补形法补形法把空间图形补成熟悉的或完整的几何体,把空间图形补成熟悉的或完整的几何体,如正方体、长方体等,其目的在于易于发如正方体、长方体等,其目的在于易于发现两条异面直线的关系。现两条异面直线的关系。41在空间四边形S-ABC中,SABC且 SA=BC,E,F分别为SC、AB 的中点,那么异面直线EF 与SA 所成的角等于()CSABEFD(A)300 (B)450 (C)600 (D)900练习B42- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 求法 课堂 PPT
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文