概率论与数理统计习题.doc
《概率论与数理统计习题.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计习题.doc(43页珍藏版)》请在咨信网上搜索。
第一章 概率论的基本概念 一、填空题: 1.设则 , , 。 2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。 3.设A,B,C为三事件且P(A)=P(B)=P(C)=,,则A,B,C中至少有一个发生的概率为 . 4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 . 5. 设A,B为两事件, 当A,B不相容时, 当A,B相互独立时, 。 二.、选择题 1. 1.设A,B为两随机事件,且则下列式子正确的是( )。 (A) (B) (C) (D) 2.每次试验成功的概率为p(0< p<1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。 (A) (B) (C) (D) 3.设A,B为两事件,则P(A-B)等于( )。 (A) (B) (C) (D) 4.关于独立性,下列说法错误的是( )。 (A)若则其中任意多个事件仍然相互独立; (B)若则它们之中的任意多个事件换成其对立事件后仍然相互独立 (C) 若A与B相互独立, B与C相互独立, A与C相互独立, 则A,B,C相互独立; (D) 若A,B,C相互独立,则与C相互独立 5. n张奖券中含有m 张有奖的, k个人购买,每人一张,其中至少有一人中奖的概率是( )。 (A) (B) (C) (D) 三、解答题 1.写出下列随机式验的样本空间及事件A包含的样本点 (1)掷一颗骰子,设事件A={出现奇数点}; (2)一袋中有5只球,分别编号为1,2,3,4,5,从中任取3球。A={取出了3只球的最小号码为2}。 2.设A,B,C为三个随机事件,用A,B,C的运算关系表示下列各事件: (1)A发生,B,C都不发生; (2)A与B都发生,而C不发生; (3)A,B,C中到少有一个发生; (4)A,B,C都发生; (5)A,B,C都不发生; (6)A,B,C中不多于一个发生。 3.已知,求下列三种情形下的值 (1)A与B互不相容; (2); (3)A与B相互独立。 4.一批产品共40个,其中5个次品,现从中任意取4个,求下列事件的概率。 A={取出的4个产品中恰有1个次品}; B={取出的4个产品中至少有1个次品} 5.已知在10件产品中有2只次品,在其中两次,每次取一只,作不放回抽样求下列事件的概率 (1)两只都是正品; (2)两只都是次品; (3)一只是正品,一只是次品; (4)第二次取出的是次品。 6.三人独立地去破译一份密码,已知各人能译出的概率分别为 求:(1)三人中至少有一人能将此密码译出的概率; (2)三人全部将此密码译出的概率。 7.已知男性中有5%是色盲,女性中有0.25%是色盲,今从男女人数相等的人群中随机挑选一人,恰好是色盲,问此人是男性的概率是多? 8.设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A和B的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该产品是工厂A生产的概率。 第二章 随机变量及其分布 一、填空题: 1.一袋中装有5只球,编号分别为1,2,3,4,5在袋中同时取3只,以X表示取出的3只球中的最大号码,则随机变量X的分布律为 . 2.设随机变量X的分布律为则常数c = 3.若随机变量在(1,6)上服从均匀分布,则方程有实根的概率是 . 4. 设连续型随机变量X的分布函数为,则常数A= , = 5.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为 . 二、选择题 1.常数b=( )时, 为离散型随机变量的概率分布. (A) 2; (B) 1; (C) ; (D)3 2.若要可以成为随机变量X的概率密度,则X的可能取值区间为( ) (A) [] (B) [] (C) [] (D) [] 3.设随机变量X与Y 均服从正态分布, 记,,则( ) (A) 对任何实数,都有 (B) 对任何实数,都有 (C) 只对的个别值,才有 (D) 对任何实数,都有 4.如下四个函数,哪个是分布函数( ) (A) (B) (C) (D) 三、解答题 1.一批零件有9个合格品,3个废品,安装机器时,从这批零件中任取一个,若果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布律. 2.设离散型随机变量的分布函数为,求X的分布律。 3.设随机变量X的分布律为 X -2 -1 0 1 3 求:(1)的分布律 (2) (3)X的分布函数 4.设连续型随机变量X的概率密度为, 求:(1)常数A (2) (3)X的分布函数。 5.设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为,某顾客在窗口等待服务,若超过10分钟,他就离开他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数。写出Y的分布律,并求。 6.由某机器生产的螺栓的长度(cm)服从参数的正态分布。规定长度在范围内为合格品,求一螺栓不合格的概率。 7.设随机变量X在上服从均匀分布,求Y=sinX的概率密度。 第三章 多给随机变量及其分布 一、填空题: 1.若(X,Y)的分布律(下表)已知,则a,b应满足的条件是________________, 若X与Y独立,则a=______________,b=_____________________,F(2,1)=_______________。 X Y 1 2 3 1 2 a b 2.设(X,Y)在以原点为中心,r为半径的圆盘上服从均匀分布,即,则c=_____________________。 3.用(X,Y)的联合分布函数F(x,y)表述以下概率: ①=____________________________________; ②=_____________________________________; ③=_______________________________________。 4.为(X,Y)的联合分布函数,则它的联合概率密度=_______________________________。 5.设随机变量X与Y的相互独立,且,,则___________________________。 二、选择题: 1.设随机变量(X,Y)的联合概率密度函数为:则概率为( )。 (A) 0.5 (B) 0.3 (C) (D) 0.4 2.设随机变量X与Y相互独立,其概率分布为下表(1),(2),则下列式子正确的是( )。 (A) X=Y (B) (C) (D) 3.下列四个二元函数,哪个不能作为二维随机变量(X,Y)的分布函数( )。 (A); (B); (C) ; (D)。 4.设X,Y是相互独立的两个随机变量,它们的分布函数分别为,则的分布函数为( )。 (A); (B); (C); (D); 5.随机变量X与Y相互独立,且和,则以下正确的是( )。 (A) (B) (C) (D) 三、计算题: 1.在一箱了中有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样:(2)不放回抽样。 定义随机变量如下: 试分别就(1)(2)两种情况,写出X和Y的联合分布律和边缘分布律。 2.甲乙两人独立地进行两次射击,设甲乙的命中率分别为0.2,0.5,以X和Y分别表示甲和乙的命中次数,试求X和Y的联合概率分布律和边缘分布律。 3.设X和Y是两个相互独立随机变量,X在(0,0.2)上服从均匀分布,Y的概率密度为,求(1)(X,Y)的联合概率密度;(2)。 4.设(X,Y)的联合概率密度为:求:(1)常数k; (2) (X,Y)的分布函数;(3)求。 5.设(X,Y),的联合概率密度为求(1)关于X,Y的边缘概率密度;(2)判别X与Y是否独立。 6.离散型随机变量(X,Y)的分布律如下图:求Y=0时,X的条件概率分布。 0 1 2 -1 0.1 0.3 0.15 0 0.2 0.05 0 2 0 0.1 0.1 7.设某种型号的电子管的寿命(以小时计)近似地服从N(160,20z)分布,随机地取4只,求其中没有一只寿命小于180小时的概率。( Φ(1)=0.8413) 8.已知X与Y的分布律为:(下表所求),且X和Y相互独立,求X+Y的分布律。 X 1 2 0.5 0.5 Y 1 2 0.5 0.5 9.设平面区域D由曲线及直线所围成,二维随机变量(X,Y)在区域口上服从均匀分布,则(X,Y)关于X的边缘概率密度在处的值为__________。(1998年数学一) 10.已知随机变量X和Y的联合概率密度为求X和Y的联合分布函数。(1995年数学四)。 第四章 随机变量的数学特征 一、填空: 1.设,且,则E(x)=________________,D(x)=_____________。 2.设随机变量X的概率密度为:则E(x)=_______________。 3.若X~b(3,0.4),则Y=1-2X所服从的分布中E(X)=_________________, D(X)=_________________。 4.若X与Y相互独立,E(X)=0, E(Y)=1, D(X)=1,则E[X(X+Y-2)]=___________________。 5.设是一组两两独立的随机变量,且,,令,则服从的分布是_________________。 二、选择题 1.设X和Y为两个随机变量,已知E(XY)=E(X)E(Y),则必有( )。 (A) (B) (C)X与Y相互独立 (D)X与Y相关 2.若随机变量X与Y满足D(X+Y)=D(X-Y),则下列式子正确的是( ) (A)D(Y)=0 (B)D(X)D(Y)=0 (C)X与不相关 (D) X与Y相互独立 3.若,则当且仅当( ) 成立: (A) (B) (C)D(XY)=D(X)D(Y) (D)X与Y相关 4.X与Y相互独立,且D(X)=6,D(Y)=3,则Z=2X-3Y的D(Z)为( ) (A)51 (B)21 (C) –3 (D)36 5.(X,Y)的联合概率密度函数为则X与Y的相关系数 = ( )。 (A)-1 (B) (C) (D) 三、计算: 1.掷一骱子,X为其出现的点数,求X的E(X),D(X)。 2.已知(X,Y)的联合分布律:(1)判定X与Y是否独立;(2)求X与Y相关系数,并判定X与Y是否相关。 X Y -1 0 1 -1 1/8 1/8 1/8 0 1/8 0 1/8 1 1/8 1/8 1/8 3.设,试求:(1)X的概率密度f(x); (2)的数学期望;(3)若,求D(Y)。 4.设长方形的高(以m计),已知长方形的周长(以m计)为20,求长方形面积A的数学期望和方差。 5.设,则a= ? E(XY)= ? 6. 已知,设随机变量,求(1)E(Z),D(Z);(2)X与Z的相关系数。 7.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则方差D(Y)=____________________。(2000年数学三) 8.设X的概率密度为: (1)求E(X). D(X);(2)求X与|X|的协方差,并问X与|X|是否不相关;(3)X与|X|是否相互独立?为什么?(1993年数学一) 第五、六章 大数定理及中心极限定理和抽样分布 一、选择题(以下各题选项中只有一个正确) 1、设是一随机变量序列,a是常数,那么此序列依概率收敛于a的充要条件是 ( ) (A)对任何实数 (B)对任何实数 (C)对任何实数 (D)对先分小的 2.设各零件的重量都是随机变量,它们相互独立。且服从同一分布,数学期望为0.5kg,均方差为0.1kg。那么5000只零件的总重量超过2510kg 的概率是 ( ) (A)0.0787 (B) 0.0778 (C) 0.0797 (D) 0.0798 3.设是来自总体X的一个样本。那么样本的标准差是 ( ) (A) (B) (C) (D) 4.关于t分布的分位点的正确结论是 ( ) (A) (B) (C) (D) 5.设总体X的均值是,方差是,是来自X的一个样本,下列结论正确的是 ( ) (A) (B) (C) (B) 二、填空: 1.是来自总体X的一个样本,那么样本k阶中心矩_________________; 2.均值为u,方差是的独立同分布随机变量之和的标准化变量在n充分大时近似服从________________分布; 3.若 ,且独立,则服从______________分布 4.设是总体的样本,分别是样本均值和样本方差。则服从_______________ 三、 解答下列各题 1.据以往经验,某种电子元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命总和大于1920小时的概率,(注:。 2.有一批建筑房屋用的木柱,其中80%的长度不小于3m,现从中随机取出100根,问其中至少有这30根短于3m的概率。。 3.一复杂系统由n个相互独立作用的部件组成。每个部件的可靠性为0.9且必须至少有80%的部件工作才能使整个系统正常工作。问n至少为多在才能使系统的可靠性不低于0.95? 4.某种电子器件的寿命(小时)具有数学期望μ,方差。为了估计μ,随机地取n只这种器件,在时刻大于t=0投入测试(设测试是相互独立的)直到失散,测得其寿命为以,作为μ的估计,为了使。问n至少为多少? 5.设为设一个样本,求 6.已知X~t(n)求证 7.设总体是来自X的样本 (1)求的分布律 (2)求的联合分布律 (3)求 8.设在总体中抽取容量,16的样本。 (1)求(2)求 第七章 参数估计 一、选择题(以下各题选项中只有一个正确) 1.设总体X的均值u及方差都存在。且有,但均未知。是来自X的样本,那么的矩估计值是( ) (A) (B) (C) (D) 2.是来自总体X的一个样本,那么参数p的最大的然估计值是 ( ) (A) (B) (C) (D) 3.下列命题中不正确的是 ( ) (A)样本均值是总体均值u的无偏估计 (B)样本方差是总体方差的无偏估计 (C)估计量是的无偏估计 (D)k阶样本矩是k阶总体矩的无偏估计 4.设已给是总体的样本,分别是样本均值和样本方差,当未知时,量倍水平为的量倍区间是 ( ) (A) (B) (C) (D) 5.是总体x的一个样本。当是的无偏估计时c的值是( ) (A) (B) (C) (D) 二、填空题: 1、在的条件下的最大似然估计值是______________; 2.为总体的一个样本。分别是样本均值和样本方差,当未知时,u的置信水平是1-a的量倍区间是____________________; 3.连续型随机变量X的密度函数中的矩估计量是______________; 4.是总体X的一个样本,当c=_________________时是的无偏估计 三 解答下列各题 1.随机地8只活塞环,测得它们的直径为(以mm计) 74.001 74.005. 74.003 74.001. 74.000 73.998 74.006 74.002 试求总体的值μ及方差的短估计值,并计算样本方差 2.设为总体的一个样本,为相应的样本值。若总体密度函数 求的矩估计量和相应的矩估计值。 3.已知总体X的分布律(其中0<P<1),是来自总体的样本,求p的矩估计量。 4.设是来自总体的一个样本,相应观察值是总体X的密度函数求的最大似然估计量。 5.设某种电子器件的寿命(以小时计)T服从双参数的指数分布,其概率密度为 自一批这种器件中随机地取n件进行寿命试验。设它们的失效时间依次是 (1)求与C的最大似然估计 (2)求与C的矩估计 6.设是来自总体X的一个样本。且求的最大似然估计。 7.设是来自总体X的一个样本,设 (1)确定C,使是的无偏估计。 (2)确定C,使是的无偏估计。 8.设是来自均值为的指数分布总体的样本。其中未知设有估计量 (1)指出中的的无偏估计量 (2)在(1)中无偏估计量中说明有效性 9.设从均值μ,为差的总体中,分别抽取容量为的两独立样本表示两本平均值。试证明:对任意常数都是μ的无偏估计。并确定使D(y)达到最有效。 10.设某种清漆的9个样品,其干燥时间(以小时计)分别为 6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 6.1, 5.0; 设干燥时间总体服从正态分布求μ的置信水平为0.95的置信区间 ( 1)若 (2)若未知。 第八章 假设检验 一、 选择题: 1、确定检验法则时,当样本密量固定,为犯第I类错误的概率。为犯第II类错误的概率。则下列关系正确的是___________。 (A) 减小时,往往减小; (B)减小时,往增大; (C)增大时,往往增大; (D)无法确定。 2、假设检验中,为原假设,则________犯第I类错误。 (A)为真,拒绝; (B)不真,接受; (C)为真,接受; (D)不真,拒绝。 3、设总体,为实量为n的样本均值,零假设;,备捍假设:。若已知。显著性水平为,则拒绝域为____________ (A) (B) (C) (D) 4、对显著性检验来说,犯第I类错误的概率为p,则p______________ A、; B、 C、 D、 二、 填空题: 1、只对_______加以控制而不考虑________的检验,为显著性检验。 2、假设检验包括双边检验和单边检验。单边检验包括___________________。 3、在t检验中,,若假设:。 ,则拒绝域为_________;若假设: ,则拒绝域为______________。 4、设为来自总体X的样本,和分是样本均值和样本方差,已知。则假设:, 时,构选统计量______________,的拒绝域__________。 三、计算题 1.由经验知某味精厂袋装味精的重量,其中,技术革新后,改用机器包装,抽查8个样品,测得重量为(单位:克): 14.7, 15.1, 14.8, 15, 15.3, 14.9, 15.2, 14.6已知方差不变,问机器包装的平均重量是否仍为? 2.已知某炼铁厂铁水含C量现观测了九炉铁水,其平均含C量为4.484。如果估计方差无变化。可否认为现生产的铁水平均含C量仍为4.550?(。 3.在某砖厂生产的批砖中,随机地抽测6块,其抗断强度为32.66, 30.06, 31.64, 30.22, 31.87, 31.05。设砖的抗断强度。问能否认为这批砖的抗断强度是 4.某厂生产的钢筋断裂强度,今从现在生产的一批钢筋中抽测9个样本,得到的样本均值X较以往的均值M大17。设总体方差不变。问能否认为这批钢筋的强度有明显提高:(。 5.某灯泡厂生产的灯泡平均寿命是1120小时,现从一批新生产的灯泡中抽取8个样本,测得其平均寿命为1070小时,样本方差,试检验灯泡的平均寿命有无变化(?。 6.正常人的脉博平均为72次/分,今对某种疾病患者10人,测其脉博为:54,68,65,77,70,64,69,72,62,71(次/分),设患者的脉搏次数,试在显著性水平下,检验患者的脉搏与正常人的脉搏有无差异? 7.过去某工厂向A公司订购原材料。自订货日开始至交货日止,平均为49.1日。现改为向B公司订购材料,随机抽取向B公司的8次货,交货无数为: 46,38,40,39,52,35,48,44.问B公司交货日期是否较A公司为短?(。 8.且元自动包装机包装葡萄糖,规定标准每袋净重500g,假定在正常情况下,糖的净重服从正态分布,根据长期资料表明,标准差为15g,现从某一班的产品中随机取出9袋,测得重量为:497,506,518,511,524,510,488,515,512。 问包装机工作是否正常:(。 (1)标准差有无变化? (2)平均重量是否符合规定标准? 9.某种罐头在正常情况下,按规格平均净重379g,标准差为11g,现抽查十盒,测得如下数据。(g)。370.74, 372.80, 386.43, 398.14, 369.21, 381.67, 367.90, 371.93, 386.22, 393.08。 试根据抽样结果,说明平均净重和标准差是否符合规格要求(提示:检验。 参考答案 第一章 概率论的基本概念 一. 填空题 1. 0.1; 0.5; 0.9 ; 2. 0.85 ; 3. ; 4. ; 6. 0.3; 0.5; 二.选择题 1.A 2.B 3.C 4.C 5.A 三. 解答题 1.(1)S={1,2,3,4,5,6} A={1,3,5} (2)S={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4)(2,3,5) (2,4,5),(3,4,5)} A={(2,3,4),(2,3,5), (2,4,5) 2. (1) (2) (3) (4) (5) (6) 或 3.(1) (2) (3) 4.P(A)=0.3581 ; P(B)=0.4271 5.(1) ; (2) ; (3) ; (4) 6.(1) ; (2) ; 7. ; 8. 第二章 随机变量及其分布 一、填空题 1. X 3 4 5 2. ; 3. ; 4. 1 ; ; 5 . 二.选择题 1.B 2.A 3.A 4.D 三. 解答题 1. X 0 1 2 3 2. X -1 0 2 6 3.(1) (2) X 0 1 4 9 (3) 4.(1) ;(2) ; (3) 5. ; 0.5167 6. 0.0456 ; 7. 第三章 参考答案 一、1.,,, 2. 3. ① ② ③ 4. 5. 二、1.B 2. C 3. C 4. D 5. A 三.1.(1)放回抽样: X Y 0 1 0 1 1 (2)不放回抽样 X Y 0 1 0 1 1 X Y 0 1 2 0 0.16 0.08 0.01 0.25 1 0.32 0.16 0.02 0.5 2 0.16 0.08 0.01 0.25 0.64 0.32 0.04 1 3.(1) (2) 4.(1) (2) (3) 第四章 参考答案 一、1.E(X)=2 D(X)=2 2. E(X)=0 3.E(X)=-1.4 D(X)=2.88 4. 1 5. 二、1.B 2. C 3. B 4. A 5. D 三、1.① ②. 2. (1)X与Y不独立 (2),X与Y不相关 3. (2) (3) 4. E(A)=8.67 D(A)=21.4 5. 6. (1) (2) 7. 8.(1) (2), X与|X|不相关 (3)X与|X|不相关独立。 第五章、第六章 一、 选择题: 1、(A) 2、(A) 3、(D) 4、(C) 5、(A) 二、 填空; 1、 2、N(0,1) 3、 4、t分布 第七章:参数估计 一、选择题: 1、(A) 2、(A) 3、(C) 4、(D) 5、(C) 二、填空题: 1、 2、 3、 4、 第八章 参考答案 一、 选择题: 1、C 2、A 3、D 4、C 二、填空题: 1、第I类错误, 第二类错误 2、左边检验和右边检验。 3、; 4、, (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文