纳米生物技术在医学中的应用.doc
《纳米生物技术在医学中的应用.doc》由会员分享,可在线阅读,更多相关《纳米生物技术在医学中的应用.doc(7页珍藏版)》请在咨信网上搜索。
1、纳米生物技术在医学中的应用作者:天天论文网 日期:2015-12-30 10:09:07 点击:1摘 要:近年来纳米材料和纳米生物技术在临床治疗及临床诊断方面的应用越来越广泛,纳米药物、纳米医用材料、纳米芯片技术、体外诊断试剂逐渐开发并取得了重要进展。主要从纳米医疗和纳米诊断这两方面对纳米材料和纳米生物技术的现状及其发展前景进行了阐述。关键词:纳米生物技术;纳米医疗;纳米药物;纳米诊断纳米技术是20世纪80年代发展起来的一门覆盖面极广、多学科交叉的高新技术。当物质到达纳米尺寸后,其性能就会发生突变,出现特殊性能,如小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等。近些年,与生物相关的纳米
2、生物技术发展极为迅速,成为国际生物技术领域的前沿和热点,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体,纳米医用材料、纳米生物传感器和成像技术以及微型智能化医疗器械等1,将导致诊断和治疗手段的新发展2。本文对纳米医疗技术及纳米诊断技术两方面的最新进展进行了总结,对纳米生物技术未来的发展前景做出了展望。1纳米医疗纳米技术的研究重点之一就是开发安全有效的药物/基因传递载体,研究合理的输送和靶向给药2。目前国际上纳米生物技术在临床上的研究范围涉及纳米药物包括纳米给药系统3、纳米生物材料4、纳米生物相容性器官等领域。1.1纳米药物纳米药物通常是指以合成/天然材料为载体,将药物通过各
3、种物理或者化学方法引入的体系,也可以是直接将原料药物加工制成的纳米药物晶体。前者又称为纳米给药体系,是本文关注的重点。根据结构和组成不同,纳米药物可以分为纳米粒、纳米球、纳米囊、纳米脂质体和聚合物胶束等。不同于大部分常规药物,纳米药物的生物活性与载体的化学结构和物理性能密切相关。一方面,可以通过研发各种化学和工艺方法提高载体的性能以提高纳米药物的疗效;另一方面,利用这一特性,结合纳米尺寸固有表面效应和小尺寸效应,赋予纳米药物许多常规药物不具备的优点。(1)增加药物的稳定性,提高生物利用度。纳米药物可以解决口服易水解药物的给药途径,使原本只能注射的药物可以直接口服而不破坏疗效,提高了药物的生物利
4、用率5。蛋白质、多肽及疫苗这类大分子药物,口服后易被胃酸破坏,且在肠道中很容易发生蛋白水解,故难以透过肠壁被机体吸收,现在多采用注射给药,但这常常使病人产生不适,且费用高昂。张磊等6采用逆向蒸发-超声法制备了胰岛素纳米脂质体,将胰岛素以脂质体作载体给药促进胰岛素小肠吸收,对胰岛素活性有一定的保护作用。(2)可以实现靶向和定位释药,减少药物的毒副作用。纳米药物在癌症的治疗中具有巨大的应用前景。正常组织中的微血管内皮间隙致密、结构完整,纳米药物不易透过血管壁,而实体瘤组织中血管丰富、血管壁间隙较宽、结构完整性差,淋巴回流缺失,造成纳米药物滞留在肿瘤内。这种现象被称作实体瘤组织的高通透性和滞留效应,
5、简称EPR效应。EPR效应促进了纳米药物对肿瘤组织的被动靶向性,从而增加药效并减少系统副作用。迄今为止,大部分用于临床研究并且取得明显效果的纳米药物是基于EPR 效应。纳米药物的最终目的是实现主动靶向治疗(生物导弹)。现在研究的热点是利用抗体-抗原和配体-受体结合的特异性来修饰纳米药物。阿霉素作为一种常用抗肿瘤药物因其较大的心脏毒性和骨髓抑制作用而使其应用受到限制。为减轻这种毒副作用,Suzuki7等用抗转铁蛋白受体(TER)单抗与脂质体偶联,制备出可靶向富含TER细胞的免疫脂质体包裹阿霉素。结果表明,这种脂质体能促进阿霉素进入人白血病K562细胞内,大大提高阿霉素对K562细胞的作用。(3)
6、控制释放给药,延长药物在体内的循环时间。控制释放给药系统(CRDDS)是指通过物理、化学等方法改变制剂结构,使药物在预定时间内主动按某一速度从制剂中恒速释放于作用器官或特定靶组织,并使药物浓度较长时间维持在有效浓度内的一类制剂。药物控释可以延长药物在体内的半衰期,解决因药物半衰期短而需每天重复多次给药的麻烦;纳米药物要实现延长体内的循环时间,可通过表面修饰来改变微粒的表面性质,以达到长循环的效果:一般而言,增大纳米粒的表面亲水性、采用非离子表面活性剂、增大表面吸附层厚度等方法可延长纳米粒在体内的循环时间。比如采用热融分散技术制备的喜树碱固体脂质纳米粒因其表面吸附有Poloxamer188 表面
7、活性剂,使其亲水性增加,在血液循环中滞留时间延长,喜树碱脂质纳米粒在体内的半衰期显著长于游离药物溶液8。(4)可穿过生物屏障。机体有许多天然的生物屏障保护着机体不受损害,但这些屏障的存在也给一些病变的治疗带来困难。许多药物,尤其是RNA和DNA 的遗传药物,往往是带电荷的分子,可以被细胞膜所阻断,这就需要一种特殊纳米颗粒来运输这些特殊的药物至细胞核或细胞器中发挥作用,比如细胞穿透肽修饰过的纳米药物9。(5)基因药物输送的媒介。纳米基因载体在安全性、基因保护和靶向性修饰上具有优势10。纳米颗粒基因载体是一种非病毒载体,将DNA、RNA 等基因治疗分子包裹在载体之中或键合吸附在其表面。载体表面可以
8、用特异性的靶向分子修饰来提高靶向性,进而实现安全有效的靶向性基因治疗。自组装DNA纳米结构智能药物输送载体已成为一种具有精确结构的纳米生物材料。目前研究热点是开发智能的通用载体和靶向药物11。加强纳米基因载体在体内的转染效率,是其在临床应用上的突破点。1.1.1纳米药物的类型由于篇幅限制,本文下面着重介绍聚合物纳米药物。迄今为止,用于纳米药物输送的载体主要是聚合物12。因为聚合物主要有以下优点:分子量大,由于EPR效应,作为载体能使药物在病灶部位停留较长时间,延长疗效。可通过调节聚合物物理化学性能和自身降解而达到缓释或控释药物的目的。易功能化,可把一些具有靶向作用或控释功能的组分键合在聚合物粒
9、子表面。可调控的生物降解性,避免药物释放后聚合物载体材料在人体器官聚积,产生毒副作用。(1)聚合物键合药物。聚合物键合药物又称为聚合物前药,它们的生物活性取决于键合的小分子药物是否能够在病变区被及时释放出来。传统的小分子化疗药物在给药过程中遇到许多问题,如在水中溶解性和稳定性较差、体内迅速清除、毒副作用大等。聚合物键合药物采用化学桥联稳定药物分子,将小分子药物以可降解的化学键键合到聚合物骨架上,可以有效避免纳米颗粒在体内循环过程中不必要的药物泄露,而通过不同的化学键的选择,特别是那些对病变局部环境敏感的化学键,比如pH和酶敏感化学键,可以实现在肿瘤组织或肿瘤细胞内的可控释放,这使得其相对于通过
10、物理相互作用包载型的纳米药物更加具有优势。常见的聚合物骨架包括聚乙二醇(PEG)、聚谷氨酸(PGA)、聚N-(2-羟丙基)甲基丙烯酰胺(HPMA)。Duncan 等研发了一系列HPMA 抗肿瘤键合药物,目前正在进行临床I、II 期研究。化疗药物是以Gly-Phe-Leu-Gly键合到聚合物骨架上。通过细胞内溶酶体的酶解作用,键合的抗肿瘤药物可以被有效地释放出来,达到了细胞内给药的要求13。再比如将galactose键合到聚合物骨架上可以有效地增加这些纳米药物的肝靶向性14。(2)聚合物-蛋白质结合体:聚乙二醇和多糖经常用于制备蛋白质高分子共价结合体。获FDA批准可在临床上使用的聚合物-蛋白质结
11、合体大多数是由聚乙二醇制备的(PEGylation)。PEGylation 可增加蛋白质的水溶性和稳定性,又可降低其相应的免疫原和抗原性,从而延长药物在体内的循环半衰期15,16。如罗氏公司生产的PEGasys(PeginterferonAlfa-2a)可以使干扰素在血清中的半衰期提高50-70倍17。高分子蛋白质结合体的制备方法有:带有功能基团的高分子链与蛋白质活性部位直接连接;将与蛋白质具有特异结合作用的分子首先与高分子以共价键结合,而后实现高分子与蛋白质的特异性结合。目前关注的热点之一是对于具有治疗作用的蛋白质和催化功能的酶等生物特异性蛋白质,与高分子结合后如何保持其生物功能的问题。(3
12、)RNA纳米颗粒:在药物开发史上,化学药物和蛋白质药物已出现,RNA药物或以RNA为目标的药物将是药物开发的第三个里程碑。RNA是由腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)构成的一种核糖核酸高分子.与Watson-Crick的DNA 碱基配对(A-T,G-C)的双螺旋链的结构不同,RNA 的二级结构里经常出现一些非传统的碱基配对如环环相互作用。通过底端向上的“自组装”技术,包括模板法和非模板法,RNA分子可以构建种类繁多的和具有生物功能的纳米结构。RNA纳米治疗剂的独特之处在于,其支架、配体和治疗剂都是由RNA组成,由于其均匀的纳米级尺寸、良好的生物相容性、低毒性和目标特异性,使
13、其有利于在活的机体内应用而不会在正常器官内积累18,为癌症的治疗提供了参考意见。郭培宣等人于1986 年构建phi29 DNA组装马达,是至今所能构建最强大的生物马达。1987年郭等人19,20报道了phi29噬菌体中由pRNA(packagingribonucleic acid,简称pRNA)驱动的纳米马达。该纳米马达的功能是包裹DNA并将DNA 运送到病毒衣壳中,ATP为这种RNA马达提供能量。随后,郭的研究团队证明pRNA分子可以经过改造构建成二聚体、三聚体和六聚体的纳米颗粒,从而开创了RNA纳米技术21,22。利用此技术,该团队研发了一系列多功能RNA纳米治疗剂,可用于靶向治疗肿瘤,且
14、不会损伤正常组织。例如23-26,利用重新改变结构的RNA片段携带多达4个治疗和诊断模块构建出了超稳定的X形RNA纳米颗粒。这些RNA纳米颗粒可纳入沉默基因的小干扰RNA,调控基因表达的micro-RNA,靶向癌细胞的核酸适体,或是能够催化化学反应的核酶27。(4)固体聚合物纳米粒子。其制备方法包括单体聚合成聚合物纳米粒子和聚合物后分散自组装形成固体纳米粒子。常见聚合物载体有聚氰基丙烯酸烷酯、聚乳酸、聚(乳酸-乙醇酸),以及天然大分子如壳聚糖和白蛋白等。药物通过物理吸附或化学键合方法引入载体。Abraxane是第一个获FDA批准的聚合纳米粒子药物,用于乳腺癌、肺癌和胰腺癌的治疗,由白蛋白纳米粒
15、子和键合的paclitaxel组成,尺寸约130 nm28。聚合纳米粒子作为药物载体除需具备生物相容性和生物降解性之外,单分散性要好。将纳米粒子表面接枝PEG可有效增强分散性和在体内的循环稳定性。此外,研发多功能纳米粒子以便提高靶向性也是当今研究的一个热点。(5)聚合物纳米胶束。常见小分子表面活性剂形成的胶束稳定性较差,不适于药物运输。而聚合物纳米胶束,具有载药量高、载药范围广、稳定性好,体内滞留时间长等优点29,30。常用于难溶性药物、大分子药物及基因治疗药物的载体,还可实现靶向给药,具有广泛的应用前景。聚合物纳米胶束通常是由具有亲水部分和疏水部分的两亲嵌段共聚物在水中自组装形成的纳米级大小
16、的核-壳型胶束,尺寸大约20-100 nm。其中亲水部分多由PEG组成,疏水部分多由聚乳酸、聚环氧丙烷、聚氨基酸组成。目前至少有6种聚合物纳米胶束抗肿瘤药物进行临床研究。纳米药物是具有巨大发展前景的新型药物,其在医药领域的发展必将引起疾病诊断和治疗的革命。目前,纳米医药技术的基础理论及纳米药物的制备工艺等还很不完善。基础理论方面,人们对纳米药物在体内的行为,包括组织分布、药代动力学和药效,以及它们与载体的化学结构和物理性能之间的相互关系,都缺乏深入和系统的研究;从制备工艺来讲,制备工艺要求操作方便、成本低、易于工业化放大生产,产品性能要稳定。因此,纳米技术在医药领域中的研究还需做大量的工作。其
17、未来发展方向是增强载药量、提高靶向作用及控释能力、降低超敏反应31。1.2纳米生物医用材料纳米生物医用材料是纳米材料与生物医用材料的交叉,在人类康复工程中发挥重要作用。纳米生物医用材料将解决临床对伤口敷料、人造皮肤、人造血管和组织工程支架、高性能组织修复、器官替换的迫切需求32-34,而且已显示出巨大的潜在应用价值。材料支架在组织工程中起着重要作用35。模仿天然的细胞外基质结构而制成的纳米纤维生物可降解材料已开始应用于组织工程的修复和再生。由于软骨再生能力有限,软骨组织工程领域的发展具有重要意义,特别是在治疗老龄化社会日益流行的大关节骨关节炎方面36。嵇伟平等采用塑性变形和化学处理方法在Ti6
18、A14V合金上制得一种新型多孔纳米晶体,通过体外实验研究了成骨细胞在纳米Ti6A14V合金表面的黏附情况。结果表明,与普通钛合金相比,纳米表面钛合金早期就能使成骨细胞伪足伸展良好,促进成骨细胞紧密贴壁和早期融合,与细胞黏附相关的Integrin1的表达也高于普通钛合金,为将纳米技术应用到人工关节等植入器械领域提供了新的方向37。还可以将纳米骨材料38植入体内填充各类型的骨缺损,其网状结构可生长出很多新生的骨细胞,所有填的纳米骨材料,最后会降解消失,骨缺损部能完全被新生骨取代。目前医用纳米羟基磷灰石/聚酰胺66复合骨充填材料已投入市场,对骨缺损的恢复具有较好的作用。纳米技术与生物医学的结合,为医
19、学界提供了全新的思路,在医学领域的应用已取得一定成果。但目前大多数研究还处于动物实验阶段,仍需大量临床试验予以证实,纳米材料应用的生物安全性也有待进一步提高。这就要求生物医学研究者与纳米材料的研究人员合作需进一步加强,制造出更先进的生物医用纳米材料。2纳米诊断学纳米诊断学是纳米生物技术在分子诊断中的应用,对于发展个性化治疗具有重要意义。目前纳米生物技术在临床诊断方面的研究主要集中在纳米生物传感器39,40和成像技术41,42、使用制造纳米机器人在细胞水平上进行维修,生物标志物的提取及测定等43,44领域,以疾病的早期诊断和提高疗效为目标。2.1体外生物分子检测超灵敏的生物分子检测方法可以服务于
20、临床诊断45,46。由于待测分子含量很少,因此,对方法的检测灵敏度有很高要求。纳米材料特有的性质可以极大地提高分子检测的灵敏度和简便性47,48,人们研究了各种各样的超微量生物分子检测的信号放大方法49,50。丁良等51利用纳米晶体中阳离子交换反应释放的阳离子来诱导荧光染料,用于痕量生物分子的检测,取得良好效果。实验表明基于ZnS纳米簇的阳离子交换放大器的检测性能优于酶联免疫吸附测定法(ELISA),检测限低1000倍。标志着利用便携式床旁检测设备检测生物标记物成为可能。2.2体内诊断2.2.1纳米金粒子纳米金粒子是一种无毒且生物相容性良好的纳米材料,合成方法简单、粒径可控,表面化学性质活泼,
21、容易修饰或吸附其他物质,而且具有独特的光电性能,因此近年来国内外对纳米金粒子在生物学领域的应用进行了广泛的研究。Feng等利用聚乙二醇-葡萄糖-金纳米粒(PEG-Glu-GNPs)作为成像探针做CT及PET扫描的造影剂,注射纳米金粒子后的小鼠,使用高分辨率显微CT检查,测定灰度密度和CT测定微粒的排泄随时间的衰减值。注射PEG-Glu-GNPs后肿瘤的轮廓很容易与周围组织区别开来,这种复杂的探针可以实现体内疾病的早期诊断,大大有助于癌症或癌转移的早期发现52。另外开发体内神经递质参与脑化学的监测是一项具有挑战性的工作,有助于进一步理解生物分子在病理和生理上的作用。Liu 等53报道了一种新型的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 生物技术 医学 中的 应用
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。