Matlab程序Newton插值函数.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Matlab 程序 Newton 函数
- 资源描述:
-
编写程序构造区间上的以等分结点为插值结点的Newton插值公式,假设结点数为(包括两个端点),给定相应的函数值,插值区间和等分的份数,该程序能快速计算出相应的插值公式。以,为例计算其对应的插值公式,分别取不同的值并画出原函数的图像以及插值函数的图像,观察当增大时的逼近效果. 解:Matlab计算程序为: clear clc f=input('请输入函数表达式:f(x)=','s'); %测试公式为:1/(1+25*x^2) a=input('请输入区间左端值a:'); %-1 b=input('请输入区间右端值b:'); %1 n=input('请输入区间结点数(包括两个端点)n:'); %取不同n值比较 for i=1:n x(i)=a+(b-a)/(n-1)*(i-1); y(i,1)=eval(subs(f,'x','x(i)')); end for j=1:n-1 for k=j:n-1 temp=y(k+1,j)-y(k,j); y(k+1,j+1)=temp/(x(k+1)-x(k+1-j)); end c(j)=y(j,j); c(j+1)=y(j+1,j+1); end p=c(1); q=1; syms X for i=2:n q=q*(X-x(i-1)); p=p+c(i)*q; end p=simple(p) for i=1:301 t(i)=a+(b-a)/300*(i-1); Nn(i)=eval(subs(p,'X','t(i)')); end for i=1:301 h(i)=a+(b-a)/300*(i-1); yy(i)=eval(subs(f,'x','h(i)')); end plot(h,yy,'r') hold on plot(t,Nn,'b') hold on grid on legend('ÔʼÇúÏßf(x)','²åÖµÇúÏßN(x)') title('Å£¶Ù²åÖµ') xlabel('x') ylabel('f(x)') 当n=5时,Newton插值公式为: p =(1250*X^4)/377 - (3225*X^2)/754 + 1 Matlab绘制的拟合图像为: 由上图可见,n取较小值时,拟合误差较大 当n=10时,Newton插值公式为: p = (9094987740384*X^9 + 5272349642029869237892763424*X^8 - 16938813146112*X^7 - 10950865478705002051580730624*X^6 + 10150693091136*X^5 + 7491941821973715378406714008*X^4 + 1915628554944*X^3 - 2014100801013926045821422321*X^2 + 322192441744*X + 210052147079480949741593257)/243810615467456022706126848 Matlab绘制的拟合图像为: 由上图可见,随着n的增加,曲线拟合情况变好,且曲线两端拟合情况不如中间好。 当n=15时,Newton插值公式为: p =-(886144712452400143429998262468608*X^14 - 215210091376623616*X^13 - 2567287824076382325356649416884224*X^12 + 351363414492446720*X^11 + 2856715604724742318918376846921728*X^10 - 124384721505571072*X^9 - 1557570733005289908575362785327872*X^8 + 250622679002678528*X^7 + 442823737113677610968911987842944*X^6 - 45553876737267808*X^5 - 65683899076401881002269596823496*X^4 - 9367027174733137*X^3 + 5085926865218992168091551893616*X^2 - 357025210182313*X - 236625997883333173618553311618)/236625997883333132703043158016 Matlab绘制的拟合图像为: 由图可见,随着n的增加,曲线中部的拟合情况更好,曲线在两端出现了严重的龙格现象,在(-0.5,0.5)区间内,曲线拟合情况最好 当n=20时,Newton插值公式为: p = -(63091697858638300062632225206272000*X^19 + 2374413278149671534934697712425184802508149981184*X^18 - 233036380708180230561163827474169856*X^17 - 8842814924308988434758093795575036385866874978304*X^16 + 350490414383474291117787759376072704*X^15 + 13577245591875304861693369543392784485746920259584*X^14 - 279615375477559682182077154276278272*X^13 - 11193422709788459567474162293005231928783338979328*X^12 + 135199141479468540752143239747409920*X^11 + 5418724026550657821855798963625114991858503623680*X^10 - 39800512689784644819739734827479552*X^9 - 1588341903846823612670522910137112930615063446016*X^8 + 6108762937766528070269435178249736*X^7 + 282597402119571697616731016707722670895597485248*X^6 - 375900768299031394484544770592548*X^5 - 30312533601791212134629580468196716494074564648*X^4 + 29463092871819230746035628155207*X^3 + 2000031883420094127298041287435989908093249245*X^2 - 285093476768159225941195384299*X - 91816471300153856284326939814131723991381301)/92493407215603961126243040917041525446148096 Matlab绘制的拟合图像为: 由上图可见,随着n的增加,曲线中部的拟合情况更好,但两侧曲线龙格现象更加明显。 当n=40时,Matlab绘制的拟合图像为: 由图可见,当n增加时,龙格现象不断加深。当n增大到一定程度,由于两端龙格现象过于严重,导致曲线中部拟合情况不明显。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




Matlab程序Newton插值函数.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3138103.html