660MW超临界火力发电热力系统分析.doc
《660MW超临界火力发电热力系统分析.doc》由会员分享,可在线阅读,更多相关《660MW超临界火力发电热力系统分析.doc(91页珍藏版)》请在咨信网上搜索。
1、1 绪论1.1 课题研究背景及意义 我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球范围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。由此看来,煤炭消耗量还是最主要的能源消耗 1。电力生产这块来看,在2011年,我国
2、整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供2。 自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长3。飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从几乎翻2.5倍的增长为到了,煤耗的消耗量增加了13亿吨。预计到2020年,火电装机的容量还
3、会增长到,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%4,5。随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。这表明,全国600兆瓦及其以上级别的超临界火电机组在设计水平、实
4、际运行等方面与国外成熟的火电技术是有着较大的差距。这样看来,对于600兆瓦及其以上级别的超临界火电机组的热力系统优化,探求其节能的潜力有着很重要的意义6。节能是我国很多年来一直遵循的重要方针和贯彻可持续发展的重要战略,从2016年开始,我国进入十三五规划的重要时期,在这一时期,我国全面建成小康社会的最为重要的时期。预计世界经济会进入后危机时期,全国经济建设和工业发展将进入新的平稳上升期7-9。工业发展进入更为绿色的新阶段,新能源带来的冲击会给传统工业带来更大的危机。这对于传统工业来是机遇和挑战,对于火力发电来说,能耗的高消耗是绿色发展的重要方向10。火电厂标准煤耗的降低会节省大量的消耗煤炭,节
5、能指标也会得以体现,例如秦岭发电厂中主要参数对煤耗的影响中,锅炉效率煤增加1%,标准煤耗率就会降低3.2克/千瓦时,年标准煤耗量就会减少23360吨,年生产成本就会节省1188.79万元11。因此可以看出其节能影响之大,将热力系统作为对象定量计算和分析,对机组内部参数进行剖析。定量计算方法对考核火力发电机组的热经济性有着非常实际的指导意义和现实价值,作为火电厂系统的初始设计方法和技术改造基础在热力系统分析方法中有着重要的地位12。本文将采用定流量计算分析火电厂热力系统的热力单元之间存在的能量关系,探讨可优化的点,为节能寻找优化信息。我们可以依靠系统增加的有序性和减少的不确定性用以将能源的利用率
6、进行提高。1.2 国内外发展现状热力系统的分析方法是为了更加准确的和真实的展示热力系统内部的真实情况和反映出热力单元之间存在的关系。经过诸多的科研工作者和前人科学家的努力研究和实际应用尝试,现今,针对各个热力参数的研究出现了多种研究方法,这些研究方法根据其基础原理,有基于热力学第一定律的,其中有代数运算方法、矩阵法和偏微分理论方法;基于热力学第二定律并结合第一热力学定律的主要是分析方法。1.2.1 代数运算法的研究进展代数运算法本质上是根据实际运行情况联立每个热力单元,热力子系统的质量与能量的平衡方程,计算精确度比较高的分析方法。主要是基于热力学第一定律的大框架下,对抽汽回热系统的各级抽汽之间
7、的关系量化,数据化计算分析13,14。代数运算法在热力分析中存在多种方式,都是基于热力学第一定律的大框架下。主要是对抽汽回热系统的平衡方程组进行量化并完善求解,也会根据实际情况改变方程组达到更加真实表现出实际的效果,这里有串联解法以及循环函数法和等效热降法。热力系统串联解法是在最早的电力行业建设时发电工程的早期运算方法,根据回热加热器的能量平衡原则来计算抽汽回热中各级的抽汽数值,作为基本的热力分析方法,因为其经典的计算方式在现今仍有很强的使用性。串联解法的使用需从高压力的一级加热器也就是通常为高加一级一级开始计算分析,固定高加的给水流量进行运算15。美国的工程师J.K.Salisbury根据实
8、际生产中提出“加热单元”这一概念,我国的马芳礼在这基础上提出了循环函数法,这是一个简化分析方法16。这个方法需要先计算出热力系统的抽汽量等参数,然后将热力系统各个系统分开拆解为多个子系统再重合计算。热力系统有时需要改变一些情况再剖析内部实质,有些运算的受限是因为热力系统的热效益的影响,因此对一些损失的影响计算结果并不是很完善和灵活。等效焓降法是前苏联的专家Kuznetsov最早提出的方法,经过十年的严谨完善,然后我国研究工作者将其引入并研究应用实际中17,18。等效焓降法是根据平衡方程,导算出等效焓降值和对应的抽汽率,以此为标准分析热力系统的热经济性。该方法在考虑再热机组时应考虑到再热增加量,
9、要计算出再热抽汽级的真实等效焓降才会更有意义,否则计算结果没有参考性。20世纪中叶时期,由美国学者Salisbury.J.Kenneth提出来了等效抽汽法19,我国有研究者解读了这一方法20。这个方法是把Z级回热抽汽假象为一股抽象的抽汽,抽汽量为所有各级抽汽量之和,假想地这个抽汽的焓值是各级抽汽对应抽汽焓经过加权平均算得的值。等效抽汽法是的原则是,将单位质量的凝汽以基础进行分析运算,它的焓值越小,抽汽量越大,热耗率就会越来越低。1.2.2 矩阵法的研究进展矩阵法最早是在20世纪90年代由郭丙然和其他学者最早提出的热力系统分析方法21,22。将热力系统的抽汽回热系统中的热力单元,依据能量守恒列出
10、线性方程组进行联立起来求解就是该方法的分析过程。这样可以一次计算出很多个未知参数,并可以解出抽汽量的数值,这种对应于串联解法的分析方法可以称之为并联解法。在之后的很多学者还是对矩阵法进行了完善和研究,可以让他会有更好的灵活性和通用性23,24。现今,应用矩阵方法对热力系统其经济性研究更加完善和方便。1.2.3 偏微分法的研究进展偏微分法是最早由张春发显示提出的,最早主要是为了定义和推到等效焓降值和相对应的抽汽效率的。刚开始称之为“小扰动理论”,并有学者验证了其一致性25,26。之后结合矩阵法的基础上,有学者提出了新的方法热(汽)耗变换系数法27,是利用推导的热耗变换系数和汽耗变换系数作为评定标
11、准,对热力系统进行计算分析的。1.2.4 分析法的研究进展最早的Gouy等一些人提出了能的质量概念,后来由Rant在1956年总结出了“”的概念并提出,这使得能量被分成了可以转换和不可装换两个新的部分。名称是“Exergy”,中文命名为“”。 效率反映出了一个设备能量转换为有用功的程度。人们注意到了体现的是能量转换的程度,这对节能具有重要研究意义,外国研究者作了很多将实际生产运用到了分析中28-33。越来越多的研究人员将分析法结合实例进行计算,通过评定参数损失量、效率、损系数以及损率对实际生产提供越来越有意义的指导方向。1.3 本文研究内容本文将在秦岭发电厂实习期间学习的660MW超临界发电机
12、组作为研究对象,通过运用等效焓降法、固定新汽流量建立平衡矩阵方程式方法、分析法将系统的汽轮机抽汽回热系统作为主要研究对象,通过计算各级抽汽的各个参数数值关系和相互影响,得到分析结果。将实际运行过程中的因素考虑进去,得算出抽汽分配和给水焓升分配结果,分析其中数值关系。从中探究出计算参数的数值同实际情况的异同,寻求可优化节能部分,试提出意见和建议。本文主要的研究内容有:(1)利用各级抽气参数结合等效焓降的方法导算出各级抽汽的等效焓降算式以及对应的抽汽效率的算式,计算出各级(相对于新汽的)抽汽率和抽汽做功不足系数,相关抽汽级的真实等效焓降和对应的抽汽效率,新汽的等效焓降和抽汽效率,从计算结果中做出分
13、析,解剖其中大小异同原因,做出科学的解释。(2)利用矩阵法热力分析方法结合物料平衡和能量平衡守则,基于固定新汽流量的原则构建出矩阵平衡方程式并标明各热力点参数的填入规定,构建方程做出循环计算框图,运算出相对应的抽汽分配量和一些重要参数,做出针对汽轮机效率的目标函数来运用数学方法得到给水焓升分配,并分析其分配结果和改进的方法,针对实际中超临界机组的运行数据和参数,对比出异同,分析其原因。(3)运用分析方法计算出热力系统各热力单元的评定参数,输出的值,损失掉的损失量以及效率、损系数和损率。探讨分析结果中锅炉系统、汽轮机系统和抽汽回热系统损失、效率的数值大小,根据实际状况解读各评定参数结果的原因,逐
14、个分析其可优化空间和优化方法,为整个热力系统的节能提出合理化意见和建议和改进措施并探讨其可行性和困难点。2 660MW超临界机组热力系统2.1研究对象机组介绍本文所研究的对象是华能秦岭公司660MW超临界发电机组,该汽轮机是东方汽轮机厂制造的一个超临界压力汽轮机,型号为NJK622-24.2/566/566,可以根据这个型号看出来该机组是一个超临界的并且是一次再热的,再热温度是566,额定出力为622.511MW,并且是一个三缸四排汽的间接空冷凝汽式汽轮机。该机组锅炉是东方锅炉厂生产制造的一个超临界变压直流锅炉,型号为DG2141/25.4-6型,该锅炉同样是依次再热,并且全露天布置、有固态排
15、渣系统,是一个全钢机构、全悬吊结构锅34。图2-1为热力系统流程,图2-2显示了机组锅炉内过热器和再热器的布置。BOILER-锅炉 GENERATOR-发电机COND-凝汽器HP TURBINE-高压缸 IP TURBINE-中压缸 LP TURBINE-低压缸CP-冷凝水泵 B.F.P.T-给水泵汽轮机 DTR-除氧器 FP-给水泵 HP HEATER NO.1NO.3-高压加热器 LP HEATER NO.5NO.7-低压加热器图2-1 660MW机组原则性系统图Fig.2-1 Principle system diagram of 660MW unit本文研究主要对象是660MW机组汽轮
16、机抽汽回热系统,根据了解该电厂汽轮机抽气回热系统共有七段非调整抽汽,第一段抽汽引向高压缸,全机第6级后,供1号高压加热器;第二段抽气引自高压缸排汽,在全机第8级后,供2号高压加热器、给水泵汽轮机及辅汽系统的备用汽源;第三段抽汽引自中压缸,在全机第11级后,供3号高压加热器;第四段抽气引自中压缸排汽,在全机第14级后,供给除氧器、给水泵汽轮机、辅汽系统;第五至第七段抽汽均引由低压缸A和低压缸B第16,17,18级抽出。抽汽在表面式加热器中放热后的疏水,高压加热器和低压加热器每级的凝结疏水来加热下级进入工质的温度,3号高加的疏水流向除氧器,而7号低加的疏水流向凝汽器。由于各级加热器均设有疏水冷却段
17、,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。图2-3为汽轮机抽汽回热系统图,表2-1到表2-4是系统主要技术参数与抽汽回热系统各级抽汽技术参数。表中根据超临界机组系统中抽汽回热的七段抽汽温度和压力数据,查得热力学饱和水和水蒸汽热力性质表以及未饱和水与过热蒸汽热力性质表,运用线性差值法查表并计算得出各段抽汽的饱和水温度、焓值。在抽汽回热的给水数据中,由前一段抽汽直至排汽减去后一段给水出口焓值得到每一段抽汽的给水焓升值。在抽汽图2-2 过、再热器流程图Fig.2-2 Flow chart of superheater and
18、reheater表2-1 热力系统技术参数(VWO工况)回热的疏水数据中,由前一段抽汽直至第七段减去后一段疏水焓值得到每段抽汽的疏水放热量,因为1号高压缸没有再上一级的疏水,故没有疏水放热量。每一段抽汽的抽汽放热量为每一段抽的焓值减去该段抽汽的疏水焓值。Table 2-1 Thermodynamic system technical parameters (VWO condition)名称数值名称数值机组出力695.714MW中压缸排汽压力1.065MPa主蒸汽流量2141t/h低压缸进汽温度362.2主蒸汽温度566低压缸进汽压力1.044MPa主蒸汽压力24.2MPa低压缸排汽温度49.4
19、2再热蒸汽流量1738.703t/h低压缸排汽压力12KPa再热器进口温度566高压缸效率86.9%再热器进口压力4.596MPa中压缸效率93%再热器出口压力5.02MPa低压缸效率92.5%高压缸进汽温度566小汽轮机效率83.62%高压缸进汽压力24.2MPa小汽轮机排汽压力7.3KPa高压缸排汽温度315.1燃料消耗量260.74t/h高压缸排汽压力5.110MPa给水温度292中压缸进汽温度566给水压力30.56MPa中压缸进汽压力4.596MPa冷凝压力12kPa中压缸排汽温度362.9排烟温度127图2-3 汽轮机抽汽回热系统图Fig.2-3 Extractionsteamhe
20、at recovery system diagram of steam turbine表2-2 抽汽回热系统技术参数(回热抽汽)Table 2-2 Technical parameter(Extractionsteamheat recovery)抽汽段压力温度焓值压损加热器汽侧饱和压饱和水温度抽汽放热量一7.481384.93107.737.257288.281945.2二4.841325.03005.434.696260.052046.0三2.335468.73395.052.218217.682571.0四1.119361.23179.751.063182.562579.76五0.4012
21、41.12946.250.381141.872423.2六0.221178.22825.550.210121.762388.6七0.112114.62704.450.106101.242387.0排汽0.012-2531.7-49.42-表2-3 抽汽回热系统技术参数(给水)Table 2-3 Technical parameter(Feed-water)抽汽段出口水压出口水温出口水焓给水焓升一30.060293.71296.9146.5二13.879263.41150.4193.9三2.355220.8956.5182.0四1.064182.6774.5182.1五0.366140.4592
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 660 MW 临界 火力发电 热力 系统分析
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。