具有唯一平衡点的共存混沌系统及同步控制.pdf
《具有唯一平衡点的共存混沌系统及同步控制.pdf》由会员分享,可在线阅读,更多相关《具有唯一平衡点的共存混沌系统及同步控制.pdf(7页珍藏版)》请在咨信网上搜索。
1、第 15 卷第 4 期南阳理工学院学报Vol.15 No.42 0 2 3 年 7 月JOURNAL OF NANYANG INSTITUTE OF TECHNOLOGYJul.2023作者简介:张 萍(1997-),女,硕士生,主要研究方向:复杂系统控制。具有唯一平衡点的共存混沌系统及同步控制张 萍(沈阳化工大学信息工程学院 辽宁 沈阳 110142)摘 要:为探究复杂混沌系统的动力学特性以及具有唯一平衡点的混沌系统的吸引子共存现象。在 Lorenz 基础上构建了一个简单的三维混沌系统。在新混沌系统的基础上通过负反馈提出一个包含忆阻器的新四维混沌系统。通过吸引子图、分岔图和复杂度等方法对新的
2、四维混沌系统的动力学行为进行了分析。利用 Multisim 选择电阻、电容、模拟乘法器和运算放大器等元器件,设计了新混沌系统的电路仿真,生成具有良好效果的吸引子图像,通过实验结果分析验证了混沌系统在电路实现中具有可行性。设计自适应同步控制器,使驱动系统与响应系统达到同步。数值仿真结果验证了控制器的有效性。关键词:新混沌系统;忆阻器;复杂度;电路仿真;自适应同步控制 中图分类号:O415.5 文献标识码:A 文章编号:1674-5132(2023)04-0109-07DOI:10.16827/ki.41-1404/z.2023.04.021 自从 Lorenz 发现第一个混沌吸引子以来,到目前为
3、止混沌学已经发展了几十年。学者们从最开始的对混沌系统的动力学行为研究1-2,逐步开始尝试实现对混沌系统进行在一定限制条件下同步控制3-5,再到将混沌系统应用于图像加密、保密通信和生物医疗6-9等方面。因此,混沌学的研究开始从单一的研究混沌系统的动力学特性向实际应用方面转换10-11。一个结构简单并且动力学行为多样的混沌系统,在进行跨学科研究时往往能够起到决定性的作用。混沌系统的种类层出不穷,但混沌吸引子的类型大抵可以分为单涡卷、多涡卷以及保守系统的类混沌吸引子12-13,不同吸引子类型的出现主要受混沌系统结构中的非线性项以及初始条件的影响。近几年,混沌系统中吸引子共存现象受到了众多学者的青睐,
4、忆阻器的使用对混沌系统14-15的混沌特性的影响尤为明显。一个简单的忆阻器以及结构简单的混沌系统相互结合产生吸引子共存的现象更能引起人们的兴趣。本文对加入忆阻器的混沌系统的吸引子共存现象进行了探究,文章第一部分介绍了改进得到的新混沌系统及相应的混沌特性。第二部分对加入忆阻器的四维混沌系统的吸引子共存现象进行了相应阐述,并使用复杂度进行了验证。第三部分对新构造的四维混沌系统进行了电路仿真设计。最后一部分设计了自适应控制器,在参数不确定的情况下,实现了主从系统的同步控制。1 混沌系统动力学分析 为探究混沌系统的吸引子共存现象,本文在经典 Lorenz 系统的基础上改进得到新的混沌系统为x=-ax+
5、yzy=bx-xzz=-cz+x2+c (1)其中,x、y、z 为系统(1)的状态变量,a、b、c 为未知参数,系统(1)含有 7 项且包含一个常数项,系统由同一未知参数调节,结构比较简单但含有丰富的混沌特性。选取初始值(0.1,0.1,0.1),参数 a=10,b=10,c=10 时,系统(1)的相图以及时序图如图 1。通过图 1 展现的系统(1)的混沌吸引子图像和时序图,能够清晰地看出系统(1)能够产生混沌吸引子,新提出的系统(1)具有混沌特性,为后续的动力学行为探究提供了先决条件。2 负反馈构造四维混沌系统具有忆阻器的混沌系统,由于忆阻器的特殊非线性特性,使系统容易产生多个共存吸引子。系
6、统(1)虽然具有非线性有源忆阻,但由于系统的电路结构过于简单,不具备产生多个吸引子共存的能力。当系统电路存在多重均衡时,这种多重均衡会使系统在不同均衡周围产生不同的吸引子池。南阳理工学院学报第 15 卷图 1 相图和时序图 本文考虑加入正弦函数作为反馈控制输入,得到新系统为 x=-ax+yz-wy=bx-xzz=-cz+x2+cw=sinx (2)对系统(2)进行赋值:x=0,y=0,z=0,w=0,很容易确定系统(2)是具有唯一平衡点(0,0,1,0),可判定平衡点为不稳定的鞍点。系统(2)在(x,y,z,w)(-x,-y,z,-w)的坐标变换下保持不变,说明系统具有对称性。通常,混沌系统自
7、身具有对称性的情况下,会使多个吸引子共存成为可能。在对系统(2)的混沌特性进行探究时,使用李雅普诺夫指数图对系统(2)进行仿真,发现系统(2)在选取初始值为(0.1,0.1,0.1,0.1),参数选取 a=7.5,b=4,c=7,得到系统(2)的吸引子如图 2 所示。根据吸引子图和相图可以看出,系统运动轨迹复杂,具有重复、折叠以及延展的特性,但又是有界的。图 2 相图和吸引子图3 混沌系统的吸引子共存现象吸引子共存是混沌系统中重要且有趣的现象。为进一步探索系统(2)中吸引子的共存现象,现使用分岔图和相图对其进行进一步的探索。其中,a、b、c 为未知参数。为探究新系统的吸引子存在情况,选取初始值
8、为 x01=(0.1,0.1,0.1,0.1),x02=011 第 4 期张 萍:具有唯一平衡点的共存混沌系统及同步控制(-0.1,-0.1,-0.1,-0.1),参数设置 b=4,c=5,a1,8,得到系统(2)的分岔图如图 3 所示。为清晰地展现系统(2)在不同初始值时混沌吸引子的具体存在情况,选取多个具体的参数 a 的值,得到吸引子共存的相图(如图 3 所示)。图 3 不同初始值时系统(2)的分岔图图 4 不同时期吸引子共存相图 通过图 3 能够对比看出,系统(2)产生的分岔图中的密集点存在清晰的差异,说明系统(2)的动力学行为受初始值的影响。通过选取的不同参数得到的吸引子共存相图(如图
9、 4),能够看出系统(2)存在周期吸引子共存、倍周期吸引子共存和混沌吸引子共存,进一步展示了系统(2)的动力学行为。4 新系统的复杂度分析混沌系统的复杂度是描画混沌系统动力学特性的重要方法之一。本文主要使用 SE 算法和 C0 算法对比分析系统(2)的动力学行为。SE 算法通过傅里叶变换域内能量分布与香农熵结合得到相应的111南阳理工学院学报第 15 卷谱熵值。C0 算法主要将序列分解成规则和不规则部分,对于复杂度的计算主要为计算序列中非规则成分所占比例。系统(2)在初始值选取为(0.1,0.1,0.1,0.1)和(-0.1,-0.1,-0.1,-0.1),参数设置 b=4,c=5,a1,8时
10、的复杂度对比分析图如图 5 所示。图 5 复杂度分析 通过图 5 中的复杂度对比分析图能够清晰地看出,系统(2)在初始值的选取值不同时,复杂度存在明显的差异。图 5 中的复杂度变化规律与图 3 中的分岔图中的密集点的存在情况趋于一致,说明复杂度验证分析法有效性。5 电路设计为验证系统(1)和系统(2)电路实现的可行性,搭建的电路图如图 6 所示。图 6 系统的电路仿真图211 第 4 期张 萍:具有唯一平衡点的共存混沌系统及同步控制 图 6 中乘法器(AD633)的输出增益为 1,运算放大器(LM324M)等相关组件,分别用于加法、减法和积分等相关运算。对图 6 应用基尔霍夫定律,得到微分方程
11、x=-1C1R1x+R7C1R2R6yz-1C1R14wy=R4C2R5R3x-1C2R8xzz=-1C3R9z+R12C3R11R13U1+R4C3R3R10 x2w=1C4R15sinx (3)通过比较系统(2)与上式,选取参数 b=4,c=7得到C1=C2=C3=C4=1uFR2=R8=R10=R14=R15=1000 kR3=R5=R6=R7=R13=10 kR9=142.8 k,R12=1 kR11=R5=100 k,U1=7V (4)通过改变电阻 R1的阻值,能够得到系统(2)在参数 a 的不同取值时的吸引子。本文选取参数 a 的取值为 a=3,4.5,7,10,电阻 R1对应的电
12、阻值分别为 333.33 k、222.22 k、142.86 k、100 k,得到相应的电路仿真吸引子图如图 7 所示。图 7 各种时期 x-y 通道的吸引子图 通过各时期 x-y 通道的吸引子图,能够清晰地观察到电路仿真的结果与数值模拟的结果一致,进一步解释了系统(2)的复杂动力学特性。6 自适应同步控制6.1 理论分析取式(2)转换为下列形式,作为驱动系统为x1=-ax1+x2x3-x4x2=bx1-x1x3x3=-cx3+x21+cx4=sinx1 (5)对应驱动系统为y1=-ay1+y2y3-y4y2=by1-y1y3y3=-cy3+y21+cy4=siny1 (6)将同步误差定义为3
13、11南阳理工学院学报第 15 卷e1=y1-x1e2=y2-x2e3=y3-x3e4=y4-x4 (7)因此,可以得到同步误差系统为e1=-ae1+(y2y3-x2x3)-e4+u1e2=be1-(y1y3-x1x3)+u2e3=-ce1+(y21-x21)+u3e4=siny1-sinx1+u4 (8)考虑设计自适应控制器为u1=a e1-(y2y3-x2x3)+e4-k1e1u2=-be1+(y1y3-x1x3)-k2e2u3=c e1-(y21-x21)-k3e3u4=-siny1+sinx1-k4e4 (9)其中,k1、k2、k3、k4为正增益常数。将式(9)代入(8)可得,闭环误差动
14、态方程为e1=-(a-a)e1-k1e1e2=(b-b)e1-k2e2e3=-(c-c)e1-k3e3e4=-k4e4 (10)设置参数估计误差为ea=a-a eb=b-bec=c-c (11)因此,方程(10)可以转换成e1=-eae1-k1e1e2=ebe1-k2e2e3=-ece1-k3e3e4=-k4e4 (12)对方程(11)进行微分可得ea=-a eb=-bec=-c(13)取李雅普诺夫函数为V=12(e21+e22+e23+e24+e2a+e2b+e2c)(14)对其求导可得V=e1e1+e2e2+e3e3+e4e4+eaea+ebeb+ecec=-k1e21-k2e22-k3e
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 具有 唯一 平衡点 共存 混沌 系统 同步 控制
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。