概率论与数理统计复习提纲.doc
《概率论与数理统计复习提纲.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计复习提纲.doc(11页珍藏版)》请在咨信网上搜索。
1、第一章 随机事件及其概率一、随机事件及其运算1. 样本空间、随机事件样本点:随机试验的每一个可能结果,用表示;样本空间:样本点的全集,用表示;注:样本空间不唯一.随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,表示;必然事件就等于样本空间;不可能事件是不包含任何样本点的空集;基本事件就是仅包含单个样本点的子集。2. 事件的四种关系包含关系:,事件A发生必有事件B发生;等价关系:, 事件A发生必有事件B发生,且事件B发生必有事件A 发生;互不相容(互斥): ,事件A与事件B一定不会同时发生。对立关系(互逆):,事件发生事件A 必不发生,反之也成立; 互逆满足注:互不相容和对立的关系
2、(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。)3. 事件的三大运算事件的并:,事件A与事件B至少有一个发生。若,则;事件的交:,事件A与事件B都发生; 事件的差:,事件A发生且事件B不发生。4. 事件的运算规律交换律:结合律:分配律:德摩根(De Morgan)定律: 对于n个事件,有二、随机事件的概率定义和性质1公理化定义:设试验的样本空间为,对于任一随机事件都有确定的实值P(A),满足下列性质:(1) 非负性: (2) 规范性:(3)有限可加性(概率加法公式):对于k个互不相容事件,有.则称P(A)为随机事件A的概率.2概率的性质 若,则注:性质的逆命题不一定成立的. 如
3、若则。() 若,则。()三、 古典概型的概率计算古典概型:若随机试验满足两个条件: 只有有限个样本点, 每个样本点发生的概率相同,则称该概率模型为古典概型,。典型例题:设一批产品共N件,其中有M件次品,从这批产品中随机抽取n件样品,则(1)在放回抽样的方式下, 取出的n件样品中恰好有m件次品(不妨设事件A1)的概率为(2)在不放回抽样的方式下, 取出的n件样品中恰好有m件次品(不妨设事件A2)的概率为四、条件概率及其三大公式1.条件概率:2.乘法公式: 3.全概率公式:若,则。4.贝叶斯公式:若事件如全概率公式所述,且 .五、事件的独立 1. 定义:.推广:若相互独立,2. 在四对事件中,只要
4、有一对独立,则其余三对也独立。3. 三个事件A, B, C两两独立:注:n个事件的两两独立与相互独立的区别。(相互独立两两独立,反之不成立。)4.伯努利概型:1.事件的对立与互不相容是等价的。(X)2.若 则。(X)3.。 (X)4.A,B,C三个事件恰有一个发生可表示为。()5. n个事件若满足,则n个事件相互独立。(X)6. 当时,有P(B-A)=P(B)-P(A)。()第二章 随机变量及其分布一、随机变量的定义:设样本空间为,变量为定义在上的单值实值函数,则称为随机变量,通常用大写英文字母,用小写英文字母表示其取值。二、分布函数及其性质1. 定义:设随机变量,对于任意实数,函数称为随机变
5、量的概率分布函数,简称分布函数。 注:当时,(1)X是离散随机变量,并有概率函数则有(2) X连续随机变量,并有概率密度f (x),则.2. 分布函数性质:(1 F(x)是单调非减函数,即对于任意x1 x2,有;(2 ;且;(3离散随机变量X,F (x)是右连续函数, 即;连续随机变量X,F(x)在(-,+)上处处连续。注:一个函数若满足上述3个条件,则它必是某个随机变量的分布函数。三、离散随机变量及其分布1. 定义. 设随机变量X只能取得有限个数值,或可列无穷多个数值且,则称X为离散随机变量, pi (i=1,2,)为X的概率分布,或概率函数 (分布律).注:概率函数pi的性质: 2. 几种
6、常见的离散随机变量的分布:(1)超几何分布,XH(N,M,n),(2)二项分布,XB(n.,p),当n=1时称X服从参数为p的两点分布(或01分布)。若Xi(i=1,2,n)服从同一两点分布且独立,则服从二项分布。(3)泊松(Poisson)分布,四、连续随机变量及其分布1.定义.若随机变量X的取值范围是某个实数区间I,且存在非负函数f(x),使得对于任意区间,有则称X为连续随机变量; 函数f (x)称为连续随机变量X的概率密度函数,简称概率密度。注1:连续随机变量X任取某一确定值的概率等于0, 即注2:2. 概率密度f (x)的性质:性质1: 性质2:注1:一个函数若满足上述2个条件,则它必
7、是某个随机变量的概率密度函数。注2:当时,且在f(x)的连续点x处,有3.几种常见的连续随机变量的分布:(1) 均匀分布 , (2) 指数分布, (3) 正态分布 , 1. 概率函数与密度函数是同一个概念。( X )2.当N充分大时,超几何分布H (n, M, N)可近似成泊松分布。( X )3.设X是随机变量,有。( X )4.若的密度函数为=,则 ( X )第三章 随机变量的数字特征一、期望(或均值)1定义: 2期望的性质:3. 随机变量函数的数学期望4. 计算数学期望的方法(1) 利用数学期望的定义; (2) 利用数学期望的性质;常见的基本方法: 将一个比较复杂的随机变量X 拆成有限多个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 复习 提纲
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。