空间任意运动刚体速度瞬轴位置的分析.pdf
《空间任意运动刚体速度瞬轴位置的分析.pdf》由会员分享,可在线阅读,更多相关《空间任意运动刚体速度瞬轴位置的分析.pdf(4页珍藏版)》请在咨信网上搜索。
1、2023.23 科学技术创新空间任意运动刚体速度瞬轴位置的分析樊薇,孙慧恬,卢其宜(江西机电职业技术学院,江西 南昌)在工程实际中,经常会遇到分析平面运动刚体上各点的速度问题,其中有一种常用的方法为速度瞬心法,只要确定了速度瞬心的位置,刚体就可以视为绕速度瞬心转动,从而避免了求矢量合成的问题,使得求速度问题更加简便。也有文章(如文献1、文献2)讨论了用加速度瞬心法求加速度问题,由此可见,瞬心法有其便捷性。进一步想象一下,如果能确定空间任意运动刚体速度瞬轴的位置,则可以用定轴转动刚体的有关方法求解刚体上各点的速度问题,从而简化了求解过程。经文献检索,文献3虽然讨论了确定空间任意运动刚体速度瞬轴的
2、位置,但我们认为还不够全面。为此,我们对这个问题进行了研究,提出了“轴向速度投影定理”。最后得出的结论认为,空间任意运动刚体存在速度瞬轴或速度动轴,因而,刚体绕速度瞬轴作转动或瞬时转动;或刚体沿速度动轴方向作螺旋运动或瞬时螺旋运动,也即刚体沿速度动轴的轴向平移和绕速度动轴转动的合成运动。1定理的提出轴向速度投影定理:空间任意运动刚体上各点的速度沿角速度矢方向上的投影相等。证明:在刚体上任取两点 A 和 B,它们的速度分别为和,刚体的角速度矢为,如图 1 所示。图 1轴向速度投影定理的证明取点 A 为基点,由基点法作出点 B 的速度平行四边形,如图 1 所示。则点 B 的速度可表达为将上式两端投
3、影到角速度矢方向上,并分别用、和表示、和在方向上的投影,则由于为点 B 以角速度绕基点 A 旋转的速度,与在空间异面垂直,故=0,于是有由于点 A 和 B 是刚体上任取的两点,于是上述定理得证。轴向速度投影定理表明,刚体沿角速度矢方向上的运动类似于刚体的平移,但与真正的平移是有区别的,因为刚体上各点在垂直于角速度矢的方向上还有旋转速度,因此将空间任意运动刚体沿角速度矢方向摘要:针对刚体空间任意运动的速度分析,本文提出了“轴向速度投影定理”。基于该定理,本文分析了空间任意运动刚体速度瞬轴位置的情况。研究结果表明,对于空间任意运动的刚体,有时候存在速度瞬轴,有时候不存在速度瞬轴。存在速度瞬轴的时候
4、,刚体绕速度瞬轴作转动或瞬时转动;不存在速度瞬轴的时候,它存在一根速度动轴,刚体沿速度动轴方向作螺旋运动或瞬时螺旋运动。在此基础上,分析空间任意运动刚体上各点速度的时候就更加方便快捷。关键词:空间任意运动;轴向速度投影定理;角速度矢;速度瞬轴;速度动轴中图分类号院O311.2文献标识码院A文章编号院2096-4390渊2023冤23-0059-04资助:江西省教育厅科学技术研究项目(GJJ 171262)。作者简介院樊薇(1967-),女,本科,副教授,主要从事液压、力学教学及研究。B()A()BA()BABABA59-科学技术创新 2023.23上的运动称为轴向平移。2各种情况下速度瞬轴位置
5、的分析下面分四种情况讨论。2.1已知刚体的角速度矢为,某点 A 的速度=0,且牵连角速度矢与平行,如图 2 所示。图 2空间任意运动刚体上速度瞬轴位置的分析由文献3可知,当与平行时,刚体的速度瞬轴 Z也与、平行,又=0,故刚体的速度瞬轴Z 通过点 A 并沿方向。此瞬时刚体绕速度瞬轴 Z作瞬时转动或定轴转动。2.2某点 A 的速度矢与刚体的角速度矢垂直。这里又分两种情况。2.2.1刚体的牵连角速度与平行,如图 3(a)所示。(a)(b)图 3空间任意运动刚体上速度瞬轴位置的分析如图 3(b)所示,将按转向绕点 A 旋转 90毅,得一射线 AN,在射线 AN 上总可以找到一点 C,使 AC=。取点
6、 A 为基点,由图中可看出,点 C 的牵连速度和相对速度在同一直线上,且大小相等、方向相反,故点 C 的瞬时绝对速度为零。再过点 C 沿的平行线方向作坐标轴 Z,显然,Z 轴即为该瞬时刚体的速度瞬轴。由轴向速度投影定理可知,此瞬时刚体上所有各点的速度沿方向的投影为零,表明刚体上各点的速度矢均与垂直。此瞬时刚体绕速度瞬轴 Z作瞬时转动或定轴转动。在 2.1、2.2.1 两种情况下,若刚体的角速度矢方向始终保持不变,且速度瞬轴上各点加速度为零,则刚体绕速度瞬轴 Z作定轴转动;若速度瞬轴上各点加速度不为零,则刚体绕速度瞬轴 Z 作瞬时转动,即刚体在与速度瞬轴垂直的方向上作平面运动,如图 7 所示。2
7、.2.2刚体的牵连角速度与相交,如图 4(a)所示。(a)(b)图 4空间任意运动刚体上速度瞬轴位置的分析由文献3知,刚体的绝对角速度可由下面的矢量等式确定。速度瞬轴 Z沿绝对角速度矢方向,要确定其方向只要计算出角 兹。点 A 的速度为由于点 A 在刚体的自身转轴上,故,亦或其中,代入上式有在以 OA 为斜边的两直角三角形中有这里有一个问题要注意,在 2.2.1 的情况下,刚体棕棕e棕棕棕棕e棕棕棕棕棕棕棕棕e60-2023.23 科学技术创新绕自身某轴以角速度矢转动时,由于固连在该轴上的动系相对于定系作平移,两坐标系之间没有相对转动,故就是绝对角速度矢(等于针对动系的相对角速度矢),如图 7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 任意 运动 刚体 速度 位置 分析
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。