精选-量子力学主要知识点复习资料.doc
《精选-量子力学主要知识点复习资料.doc》由会员分享,可在线阅读,更多相关《精选-量子力学主要知识点复习资料.doc(12页珍藏版)》请在咨信网上搜索。
大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量e 的整数倍 对频率为n 的谐振子, 最小能量e为: 2.波粒二象性 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x,y,z)上的强弱。所以,应该表示 粒子出现在点(x,y,z)附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C是一个常数,则 和 对粒子在点(x,y,z)附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z)附件出现概率的描述是相同的。 表示粒子出现在点(x,y,z)附近的概率。 表示点(x,y,z)处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 既然 表示 粒子出现在点 附件的概率,那么粒子坐标的平均值,例如x的平均值x(__),由概率论,有 又如,势能V是 的函数:,其平均值由概率论, 可表示为 再如,动量 的平均值为: 为什么不能写成 因为x完全确定时p完全不确定,x点处的动量没有意义。 能否用以坐标为自变量的波函数计算动量的平均值? 可以,但需要表示为p(__) 其中 为动量 的算符 6.算符 量子力学中的算符表示对波函数(量子态)的一种运算 如动量算符 能量算符 动能算符 动能平均值 角动量算符 角动量平均值 薛定谔方程 算符 ,被称为哈密顿算符, 7.定态 数学中,形如 的方程,称为本征方程。其中 方程 称为能量本征方程, 被称为能量本征函数, E被称为能量本征值。 当E为确定值,=拨函数所描述的状态称为定态,处于定态下的粒子有以下特征: 粒子的空间概率密度不随时间改变,任何不显含t的力学量的平均值不随时间改变,他们的测值概率分布也不随时间改变。 8.量子态叠加原理 但一般情况下,粒子并不只是完全处于其中的某一本征态,而是以某种概率处于其中的某一本征态。换句话说,粒子的状态是所有这些分立状态的叠加,即, 9. 宇称 若势函数V(x)=V(-x),若是能量本征方程对于能量本征值E的解,则也是能量本征方程对于能量本征值E的解 10.束缚态 通常把在无限远处为零的波函数所描写的状态称为束缚态 11. 一维谐振子的能量本征值 12. 隧穿效应 量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过比它们能量大的势垒的现象。这是因为根据量子力学,微观粒子具有波的性质,而有不为零的概率穿过位势障壁。 又称隧穿效应,势垒贯穿。按照经典理论,总能量低于势垒是不能实现反应的。但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。它取决于势垒高度、宽度及粒子本身的能量。能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。这就是隧道效应。例如H+H2低温下反应,其隧道效应就较突出。 13. 算符对易式 一般说来,算符之积不满足交换律,即 ,由此导致量子力学中的一个基本问题:对易关系 对易式 ,通常 坐标对易关系 角动量的对易式 14.厄密算符平均值的性质 先转置,再共轭。 体系的任何状态下,其厄密算符的平均值必为实数,在任何状态下平均值为实的算符必为厄米算符,实验上可观测量相应的算符必须是厄米算符。 厄密算符的属于不同本征值的本征函数彼此正交。 15. 量子力学关于算符的基本假设 1、微观粒子的状态由波函数 描写。 2、波函数的模方 表示 t 时刻粒子出现在空间点(x,y,z)的概率。 3、力学量用算符表示。 4、波函数的运动满足薛定格方程 16. 算符的本征方程,本征值与本征函数 数学中,形如 的方程,称为本征方程。其中 17. 不确定度关系的严格表达 18. 两个算符有共同本征态的条件 两个算符对易,即 19. 力学量完全集 若算符的本征值是简并的,仅由其本征值无法惟一地确定其本征态。若要惟一地确定其本征态,必须再加上另一些与之对易的算符的本征值才可。例如,仅由 的本征值不能确定体系状态,必再加上 的本征值才能确定体系状态。这样,为了完全确定一个体系的状态,我们定义力学量完全集。 定义:如果有一组彼此独立而且相互对易的厄米算符 ,它们只有一组共同完备本征函数集,记为 , 可以表示一组量子数,给定一组量子数后,就完全确定了体系的一个可能状态,则称 为体系的一组力学量完全集。 20. 力学量完全集共同本征态的性质 若能级简并 21. 守恒量 对于Hamilton量H不含时的量子体系,如果力学量A与H对易,则无论体系处于什么状态(定态或非定态),A的平均值及其测值的概率分布均不随时间改变,所以把A称为量子体系的一个守恒量。 22.狄拉克符号,内积及其表示形式,算符向左作用 把希尔伯特空间一分为二,互为对偶的空间,就是狄拉克符号的优点。用右矢|α>表示态矢,左矢<α|表示其共厄矢量,<α|β>是内积,<α|α>大于等于0,称为模方。|β><α|是外积。 采用狄拉克符号表示量子态是,都只是一个抽象的态矢,未涉及任何具体的表象。 算符向左作用 23.角动量平方和角动量z分量的共同本征函数 注意量纲 注意,推导过程计算题有可能要考 24. 氢原子的能量本征值与能级简并度 25. 正常Zeeman效应 原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。 26. 电子自旋 电子的基本性质之一。电子内禀运动或电子内禀运动量子数的简称 自旋不是机械的自转 27关于电子自旋的Stern-Gerlach实验 Stern-Gerlach experiment 首次证实原子在磁场中取向量子化的实验,是由O. 斯特恩和W.革拉赫在1921年完成的。实验装置如图斯特恩-革拉赫实验装置示意图示。使银原子在电炉O内蒸发,通过狭缝形成细束, 经过一个抽成真空的不均匀的磁场区域(磁场垂直于束方向),最后到达照相底片P上。在显像后的底片上现了两条黑斑,表示银原子在经过不均匀磁场区域时成了两束。 实验上高温炉中的Ag原子处于高压,从高温炉中出来之后迅速冷却,处于基态,磁量子数为零,似乎不该偏转,因此原子除了轨道磁矩外,还有其他磁矩,即自旋磁矩。 28碱金属原子光谱双线结构 29. 量子跃迁与选择定则 即谐振子只能跃迁到相邻能级 30.禁戒跃迁 31. 微扰论的思想 解薛定谔方程的一种常用的近似方法。一个量子体系,如果总哈密顿量的各部分具有不同的数量级,又对于它精确求解薛定谔方程有困难,但对于哈密顿量的主要部分可以精确求解,便可先略去次要部分,对简化的薛定谔方程求出精确解;再从简化问题的精确解出发,把略去的次要部分对系统的影响逐级考虑进去,从而得出逐步接近于原来问题精确解的各级近似解。这种方法称为微扰论。 32.突发微扰与绝热微扰 33. 能量与时间不确定度 34. 能级宽度与谱线宽度 35. 半经典理论 36吸收,受激辐射,自发辐射 后记:本复习资料整理依据是往年的量子力学总结PPT,但是那个PPT只给了考点范围,没有给概念解释,所以我查阅了PPT,教材,百度,谷歌,维基之后加上个人理解整理而得,制作粗糙,请见谅。 本复习资料只能应付填空和问答题,我很确认计算题和证明题范围超出此资料,但具体范围不清楚。祝大家考出满意的成绩。 本人不保留版权,欢迎各位学霸对此资料进修正。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 量子力学 主要 知识点 复习资料
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文