三角函数图像和性质练习题(附答案).doc
《三角函数图像和性质练习题(附答案).doc》由会员分享,可在线阅读,更多相关《三角函数图像和性质练习题(附答案).doc(7页珍藏版)》请在咨信网上搜索。
三角函数的图像与性质 一、选择题 1.已知函数f(x)=2sinx(>0)在区间[,]上的最小值是-2,则的最小值等于( ) A. B. C.2 D.3 2.若函数的图象相邻两条对称轴间距离为,则等于 . A. B. C.2 D.4 3.将函数的图象上所有的点向左平行移动个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为 A. B. C. D. 4.函数的图像F按向量a平移到F/,F/的解析式y=f(x),当y=f(x)为奇函数时,向量a可以等于 A. B. C. D. 5.将函数的图象向左平移个单位后,得到函数的图象,则等于( )高考资源网 A. B. C. D. 6.函数 的值域为 A. B. C. D. 7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变), 再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( ) A. B. C. D. 8.函数f(q ) = 的最大值和最小值分别是 ( ) (A) 最大值 和最小值0 (B) 最大值不存在和最小值 (C) 最大值 -和最小值0 (D) 最大值不存在和最小值- 9.且<0,则的取值范围是( ) A. B. C. D. 10.把函数的图象沿着直线的方向向右下方平移个单位,得到函数的图象,则 ( ) 高考资源网 A、 B、 C、 D、 二、填空题[来源:学科网ZXXK] 11.设函数 若是奇函数,则= . 12.方程在区间内的解是 . 13.函数为增函数的区间 14.已知,则函数的最大值与最小值的和等于 。 三、解答题 15.△ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值. [来源:学科网] [来源:学+科+网] 16.已知函数f(x)=sin2x+xcosx+2cos2x,xR. (I)求函数f(x)的最小正周期和单调增区间; (Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到? 17.向量a = (cosx + sinx,cosx),b = (cosx – sinx,sinx),f (x) = a·b. (Ⅰ)求函数f (x)的单调区间; (Ⅱ)若2x2 –x≤0,求函数f (x)的值域. 18.已知函数. (1)若点()为函数与的图象的公共点,试求实数的值; (2)设是函数的图象的一条对称轴,求的值;[来源:Zxxk.Com] (3)求函数的值域。 答案 一、选择题 1.B 2.C 3.B 4.D解析:由平面向量平行规律可知,仅当时,:=为奇函数,故选D. 5.C 解析:依题意得,将函数的图象向左平移个单位后得到函数的图象,即的图象。故选C 6.B 7.C 8.A 9.A 10.D[来源:Zxxk.Com] 二、填空题 11. 12. 13. 14. 三、解答题 15.解析:由[来源:Z#xx#k.Com] 所以有 当 16.解析:(1)f(x)= = =sin(2x+. ∴f(x)的最小正周期T==π. 由题意得2kπ-≤2x+,k∈Z, ∴f(x)的单调增区间为[kπ-],k∈Z. (2)方法一: 先把y=sin 2x图象上所有的点向左平移个单位长度,得到y=sin(2x+)的图象,再把所得图象上所有的点向上平移个单位年度,就得到y=sin(2x+)+的图象. 方法二: 把y=sin 2x图象上所有的点按向量a=(-)平移,就得到y=sin(2x+)+的图象. [来源:Z.xx.k.Com] 17.解析:(1)f (x) = a·b = (cosx + sinx,cosx)·(cosx – sinx,sinx) = cos2x + sin2x =sin (2x +).……2分[来源:Zxxk.Com] 由(k∈Z),解得(k∈Z). 由(k∈Z),解得(k∈Z). ∴函数f (x)的单调递增区间是(k∈Z); 单调递减区间是(k∈Z).……7分 (2)∵2x2–≤0,∴0≤x≤.……8分 由(1)中所求单调区间可知,当0≤x≤时,f (x)单调递增; 当≤x≤时,f (x)单调递减.……10分[来源:学,科,网] 又∵f (0) = 1>f () = – 1,∴–1 = f ()≤f (x)≤f () =. ∴函数f (x)的值域为.……12分 18.解析: (1)∵点()为函数与的图象的公共点 ∴ ∴ ∵∴, [来源:Z§xx§k.Com] (2)∵ ∴ ∴= [来源:学科网] (3) ∵ ∴ ∵ ∴ ∴ ∴. [来源:学*科*网Z*X*X*K] 即函数的值域为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 图像 性质 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文