专题一--乘法公式及应用.doc
《专题一--乘法公式及应用.doc》由会员分享,可在线阅读,更多相关《专题一--乘法公式及应用.doc(7页珍藏版)》请在咨信网上搜索。
1、专题一 乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3b3 归纳小结公式的变式,准确灵活运用公式: 位置变化,(x+y)(-y+x)=x2-y2 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2 指数变化,(x2+y2)(x2-y2)=x4-y4 系数变化,(2a+b)(2a-b)=4a2-b2 换式变化,xy+(z+m)xy-(z+m)=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm
2、+zm+m2)=x2y2-z2-2zm-m2 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4 逆用公式变化,(x-y+z)2-(x+y-z)2 =(x-y+z)+(x+y-z)(x-y+z)-(x+y-z) =2x(-2y+2z) =-4xy+4xz例1已知,求的值。解: =, =例2已知,求的值。解: =, 例3:计算19992-20001998例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值
3、。例5:已知x-y=2,y-z=2,x+z=14。求x2-z2的值。例6:判断(2+1)(22+1)(24+1)(22048+1)+1的个位数字是几?例7运用公式简便计算(1)1032 (2)1982例8计算(1)(a+4b-3c)(a-4b-3c) (2)(3x+y-2)(3x-y+2)例9解下列各式(1)已知a2+b2=13,ab=6,求(a+b)2,(a-b)2的值。(2)已知(a+b)2=7,(a-b)2=4,求a2+b2,ab的值。(3)已知a(a-1)-(a2-b)=2,求的值。(4)已知,求的值。例11计算 (1)(x2-x+1)2 (2)(3m+n-p)2两数和的平方的推广 (
4、a+b+c)2=(a+b)+c2 =(a+b)2+2(a+b)c+c2 =a2+2ab+b2+2ac+2bc+c2 =a2+b2+c2+2ab+2bc+2ac 即(a+b+c)2=a2+b2+c2+2ab+2bc+2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。例1. 计算: 解:原式(二)、连用:连续使用同一公式或连用两个以上公式解题。例2. 计算:例3. 计算:三、逆用:学习公式不能只会正向运用,有时还需要将公
5、式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。例4. 计算:四、变用: 题目变形后运用公式解题。例5. 计算:五、活用: 把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。例6. 已知,求的值。解:例7. 计算:三、学习乘法公式应注意的问题 (一)、注意掌握公式的特征,认清公式中的“两数”例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”
6、则是公式中的b解:原式=(-5-2x2)(-5+2x2)=(-5)2-(2x2)2=25-4x4例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式解:原式=(2x+5)+(y-z)(2x+5)-
7、(y-z) =(2x+5)2-(y-z)2 =4x2+20x+25-y+2yz-z2例4 计算(a-1)2(a2+a+1)2(a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便解:原式=(a-1)(a2+a+1)(a6+a3+1)2 =(a3-1)(a6+a3+1)2 =(a9-1)2=a18-2a9+1例5 计算(2+1)(22+1)(24+1)(28+1)分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简解:原式=(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 乘法 公式 应用
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。