二次函数综合练习题(含答案).doc
《二次函数综合练习题(含答案).doc》由会员分享,可在线阅读,更多相关《二次函数综合练习题(含答案).doc(14页珍藏版)》请在咨信网上搜索。
二次函数综合练习题 一、选择题 1.(2013江苏苏州,6,3分)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( ). A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 【答案】B. 【解析】∵二次函数y=x2-3x+m的图象与x轴的一个交点为(1,0),∴0=12-3+m,解得m=2,∴二次函数为y=x2-3x+2.设y=0,则x2-3x+2=0.解得x2=1,x2=2,这就是一元二次方程x2-3x+m=0的两实数根.所以应选B.[来源:@中教网*&^#] 【方法指导】考查一元二次方程的根、二次函数图象与x轴交点的关系.当b2-4ac≥0时,二次函数y=ax2+bx+c的图象与x轴的两个交点的横坐标是一元二次方程ax2+bx+c=0的两个根. 【易错警示】因审题不严,容易错选;或因解方程出错而错选. 2.(2013江苏扬州,8,3分)方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根所在的范围是( ). A. B. C. D.[来源:%@中~&教*网] 【答案】C. 【解析】首先根据题意推断方程x3+2x-1=0的实根是函数y=x2+3与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x-1=0的实根x0所在范围. 解:依题意得方程x3+2x-1=0的实根是函数y=x2+2与的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限. 当x=时,y=x2+2=2,=4,此时抛物线的图象在反比例函数下方; 当x=时,y=x2+2=2,=3,此时抛物线的图象在反比例函数下方; 当x=时,y=x2+2=2,=2,此时抛物线的图象在反比例函数上方; 当x=1时,y=x2+2=3,=1,此时抛物线的图象在反比例函数上方. 所以方程的实根所在的范围是. 所以应选C. 【方法指导】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势. 【易错警示】不会得出函数解析式,不会观察图象而出错. 3. (2013重庆市(A),12,4分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0).则下列结论中,正确的是( ) [来~源^@:中教&网%] A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0 【答案】D. 【解析】∵一次函数与二次函数的图象交点A的坐标为(-2,0),∴-2a+b=0,∴b=2a.[来^*源:%zzstep.&com@] 又∵抛物线开口向上,∴a>0,则b>0.而反比例函数图象经过第一、三象限,∴k>0. ∴2a+k>2a,即b<2a+k.故A选项错误. 假设B选项正确,则将b=2a代入a=b+k,得a=2a+k,a=-k.又∵a>0,∴-k>0,即k<0,这与k>0相矛盾,∴a=b+k不成立.故B选项错误. 再由a>0,b=2a,知a,b两数均是正数,且a<b,∴b>a>0.故C选项错误.[来#源:中教%*&网~] 这样,就只有D选项正确.[来源:中#国教^*@育出版网%] 【方法指导】本题考查一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象及性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D为何正确,可由二次函数y=ax2+bx与反比例函数y=(k≠0)的图象,知当x=-=-=-1时,y=-k>-=-=-a,即k<a.又因为a>0,k>0,所以a>k>0. 【易错警示】二次函数a、b、c的符号的确定与函数图象的关系混淆不清. 4. (2013湖南益阳,7,4分)抛物线的顶点坐标是( ) A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1) 【答案】:A 【解析】抛物线的顶点是(h,k) 【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式求顶点坐标。 4.(2013•徐州,28,10分)如图,二次函数y=x2+bx-的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E. (1)请直接写出点D的坐标: (-3,4) ; (2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;[中*@国&教%育出版~网] (3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由. 考点: 二次函数综合题. 分析: (1)将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B的坐标即可求得正方形ABCD的边长,从而求得点D的纵坐标; (2)PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;[来%源:中教#~网^&] (3)分点P位于y轴左侧和右侧两种情况讨论即可得到重叠部分的面积. 解答:解:(1)(-3,4); (2)设PA=t,OE=l, 由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE, ∴,∴l=-+=-(t-)2+ ∴当t=时,l有最大值, 即P为AO中点时,OE的最大值为;[来源:*^中国#教~育出版网@] (3)存在. ①点P点在y轴左侧时,P点的坐标为(-4,0) 由△PAD∽△OEG得OE=PA=1,∴OP=OA+PA=4。 ∵△ADG∽△OEG,∴AG:GO=AD:OE=4:1[来源&%:#中国教育出版~网*] ∴AG==[来*源%:z#zstep&.co^m] ∴重叠部分的面积== ②当P点在y轴右侧时,P点的坐标为(4,0), 此时重叠部分的面积为 点评: 本题考查了二次函数的综合知识,与二次函数的最值结合起来,题目的难度较大. [中国教育出版网*~&%@] 5.(2013·鞍山,18,2分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系. (1)试求y与x之间的函数关系式; (2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 考点:二次函数的应用. 分析:(1)利用待定系数法求得y与x之间的一次函数关系式;[来源:中*@教网&#~] (2)根据“利润=(售价-成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.[来源:~@中国^#教育%出版网] 解答:解:(1)由题意,可设y=kx+b,[w#ww.zzs%~@tep^.com] 把(5,30000),(6,20000)代入得:,解得:, 所以y与x之间的关系式为:y=-10000x+80000;[来源*:#中%国~教@育出版网] (2)设利润为W,则W=(x-4)(-10000x+80000)[ =-10000(x-4)(x-8)=-10000(x2-12x+32)=-10000[(x-6)2-4] =-10000(x-6)2+40000 所以当x=6时,W取得最大值,最大值为40000元. 答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元. 点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识. 6.(2013•东营,24,12分)已知抛物线y=ax2+bx+c的顶点A(2,0),与y轴的交点为 B(0,-1).[来源^:*&@中~教网] A O (第24题图) x y B (1)求抛物线的解析式;[来源~:*^中国教育%出#版网] (2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标. (3)在(2)的基础上,设直线x=t(0<t<10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.[来源#:^中国教%育出~*版网] 分析:(1)已知抛物线的顶点坐标,可直接设抛物线的解析式为顶点式进行求解. (2)设C点坐标为(x,y),由题意可知.过点C作轴于点D,连接AB,AC.易证,根据对应线段成比例得出的关系式,再根据点C在抛物线上得,联立两个关系式组成方程组,求出的值,再根据点C所在的象限确定点C的坐标。P为BC的中点,取OD中点H,连PH,则PH为梯形OBCD的中位线.可得,故点H的坐标为(5,0)再根据点P在BC上,可求出直线BC的解析式,求出点P的坐标。[来源:z#@zs%tep.^com*] (3)根据,得,所以求的最大值就是求MN的最大值,而M,N两点的横坐标相同,所以MN就等于点N的纵坐标减去点M的纵坐标,从而形成关于MN长的二次函数解析式,利用二次函数的最值求解。[来&^%源:中教网@~][中%国教育出版@&网#~] 解:(1) ∵抛物线的顶点是A(2,0),设抛物线的解析式为. 由抛物线过B(0,-1) 得,∴.……………………2分 ∴抛物线的解析式为. 即.………………………………3分[中国*^教育&#出版网~] (2)设C的坐标为(x,y).[来~源&:中国%教育^*出版网] A (第24(2)答案图) x O y C B P H D ∵A在以BC为直径的圆上.∴∠BAC=90°. 作CD⊥x轴于D ,连接AB、AC. ∵,∴ ∴ △AOB∽△CDA.………………………4分 ∴[w^*] ∴OB·CD=OA·AD. 即1·=2(x-2).∴=2x-4. ∵点C在第四象限. ∴………………………………5分[来源:中@国教育出%#~版&网] 由解得. [来源#*:中~教&%网] ∵点C在对称轴右侧的抛物线上. ∴点C的坐标为 (10,-16).……………………6分[来源:中~@国教育&*出%版网] ∵P为圆心,∴P为BC中点.[来@^&源*:#中教网] 取OD中点H,连PH,则PH为梯形OBCD的中位线. ∴PH=(OB+CD)=.……………………7分 ∵D(10,0)∴H (5,0)∴P (5, ). 故点P坐标为(5,).…………………………8分 (3)设点N的坐标为,直线x=t(0<t<10)与直线BC交于点M. ,[来源:m] A x O y C B M N x=t (第24(3)答案图) 所以 ………………………9分[来&源:zzs%tep#.@*com] 设直线BC的解析式为,直线BC经过B(0,-1)、C (10,-16)[来源:%中*&教网@~] 所以成立,解得:…………………………10分 所以直线BC的解析式为,则点M的坐标为.[www#.~zz%ste@p.^com] MN==………………………11分 == 所以,当t=5时,有最大值,最大值是.…………………………12分 点拨:(1)已知抛物线的顶点坐标(h,k)一般可设其解析式为.(2)求最值问题一般考虑根据已知条件构造二次函数求解.[来#源:中%国@教育出~&版网] [来*源%:zzstep^.com&@] [w*w^ 7.(2013·济宁,23,?分)如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).[来#~&*源:中教^网] (1)求点P运动的速度是多少? (2)当t为多少秒时,矩形PEFQ为正方形? (3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.[来源&:中*^教@#网] [w*ww.z@%z~step.c^om] 考点:一次函数综合题. 分析:(1)根据直线y=-x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度; (2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;[来源:zz~s#&tep@.com^] (3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可. 解答:解:(1)∵直线y=-x+4与坐标轴分别交于点A、B, ∴x=0时,y=4,y=0时,x=8,[来^源~:中国*教育出版网#%]∴==, 当t秒时,QO=FQ=t,则EP=t, ∵EP∥BO,∴==,[中@#国教育出~&版*网]∴AP=2t, ∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动, ∴点P运动的速度是每秒2个单位长度; (2)如图1,当PQ=PE时,矩形PEFQ为正方形, 则OQ=FQ=t,PA=2t,[中国~&教^育出版@网%]∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2, 如图2,当PQ=PE时,矩形PEFQ为正方形,[来#源:&^中*~国教育出版网] ∵OQ=t,PA=2t,∴OP=8-2t,∴QP=t-(8-2t)=3t-8, ∴t=3t-8,解得:t=4;[中国教*育&#^ (3)如图1,当Q在P点的左边时, ∵OQ=t,PA=2t,[∴QP=8-t-2t=8-3t,[来源@: ∴S矩形PEFQ=QP•QF=(8-3t)•t=8t-3t2, 当t=-=时, S矩形PEFQ的最大值为:=4,[中~国教#育出&%版网@][www.zzste*@p.c&%o~m] 如图2,当Q在P点的右边时, ∵OQ=t,PA=2t,∴QP=t-(8-2t)=3t-8, ∴S矩形PEFQ=QP•QE=(3t-8)•t=3t2-8t, ∵当点P、Q其中一点停止运动时,另一点也停止运动,网#%]∴0≤t≤4,[来#%源:中*国教育出^版网~][来^%源:中教网#~*] 当t=-=时,S矩形PEFQ的最小,[中%国教育&出^版*@网] ∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,[来~@源^:*中国教育&出版网] 综上所述,当t=4时,S矩形PEFQ的最大值为:16. 点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键. 8.(2013河北省,25,12分) 某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q = W + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据. (1)用含x和n的式子表示Q; (2)当x = 70,Q = 450时,求n的值;[来源:zzste&p%#.c^om@] (3)若n = 3,要使Q最大,确定x的值; (4)设n = 2,x = 40,能否在n增加m%(m>0)[来&源:中@教~#*网] 同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.[中~国&^教育出#*版网] 参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-,) 次数n 2 1 速度x 40 60 指数Q 420 100 解析: (1)设,∴ 由表中数据,得,解得 ∴ 4分 (2)由题意,得 ∴n=2 6分 (3)当n=3时, 由可知,要使Q最大,=90 9分 (4)由题意,得 10分 即,解得,或=0(舍去) ∴m=50 12分 9.(2013湖北省鄂州市,23,10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中: 销售单价(元) x 销售量y(件) 1000﹣10x 销售玩具获得利润w(元) ﹣10x2+1300x﹣30000 (2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.[来~@源^:中国教#育*出版网] (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? [来#源:中国教~^育出版*网@][来源*:中国教育出&版^@网~] 考点: 二次函数的应用;一元二次方程的应用.3718684 分析: (1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)x=1000﹣x,利润=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣30000; (2)令﹣10x2+1300x﹣30000=10000,求出x的值即可; (3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润. 解答: 解:(1) 销售单价(元) x 销售量y(件) 1000﹣10x 销售玩具获得利润w(元) ﹣10x2+1300x﹣30000 (2)﹣10x2+1300x﹣30000=10000 解之得:x1=50,x2=80 答:玩具销售单价为50元或80元时,可获得10000元销售利润, (3)根据题意得 解之得:44≤x≤46 w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250 ∵a=﹣10<0,对称轴x=65 ∴当44≤x≤46时,y随x增大而增大. ∴当x=46时,W最大值=8640(元) 答:商场销售该品牌玩具获得的最大利润为8640元. 点评: 本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大. 10.(2013湖北省咸宁市,1,9分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500. (1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?[来#@源*:zzste&~] (2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元? 考点: 二次函数的应用. 分析: (1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价; (2)由利润=销售价﹣成本价,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润; (3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值. 解答: 解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300, 300×(12﹣10)=300×2=600, 即政府这个月为他承担的总差价为600元. (2)依题意得,w=(x﹣10)(﹣10x+500) =﹣10x2+600x﹣5000 =﹣10(x﹣30)2+4000 ∵a=﹣10<0,∴当x=30时,w有最大值4000. 即当销售单价定为30元时,每月可获得最大利润4000. (3)由题意得:﹣10x2+600x﹣5000=3000, 解得:x1=20,x2=40. ∵a=﹣10<0,抛物线开口向下, ∴结合图象可知:当20≤x≤40时,w≥3000. 又∵x≤25, ∴当20≤x≤25时,w≥3000. 设政府每个月为他承担的总差价为p元, ∴p=(12﹣10)×(﹣10x+500) =﹣20x+1000. ∵k=﹣20<0. ∴p随x的增大而减小, ∴当x=25时,p有最小值500. 即销售单价定为25元时,政府每个月为他承担的总差价最少为500元. 点评: 本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 综合 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文