整式乘法与因式分解提高.doc
《整式乘法与因式分解提高.doc》由会员分享,可在线阅读,更多相关《整式乘法与因式分解提高.doc(16页珍藏版)》请在咨信网上搜索。
1、第十四章 整式乘法与因式分解14-1【知识回顾】一、【基础训练】(一)幂的运算1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。3、积的乘方法则:(是正整数)。积的乘方,等于各因数乘方的积。4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。5、零指数; (a0),即任何不等于零的数的零次方等于1。6、总结:幂运算的变形 ; (n为偶数) ; (n为奇数) ; (n为偶数) ; (n为奇数) (二)单项式、多项式的乘除法运算:7、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在
2、一个单项式里含有的字母,则连同它的指数作为积的一个因式。8、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,9、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。10、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。11、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。(三)课堂练习1、下列各题中计算错误的是( ) 2、化简x(yx)y(xy)得( )A、x2y2 B、y2x2 C、2xy D、2xy3、计算的结果
3、是( )A、 B、 C、 D、4、在a2nan=a3n;2233=65;3232=81;a2a3=5a;(a)2(a)3=a5中,计算正确的式子有( ) A、4个 B、3个 C、2个 D、1个 5、三个数中,最大的是( )A、 B、 C、 D、不能确定6、下列运算错误的是( ) A、 B、C、 D、7、已知,则、的大小关系是( ) A、 B、 C、 D、8、若,则等于( )A、5 B、3 C、1 D、19、边长为a的正方形,边长减少b以后所得较小正方形的面积比原来正方形的面积减少了() A、 B、2ab C、2ab D、b(2ab)10、下面计算正确的是( ) A、 B、 C、 D、二、【基础
4、过关】1、(1) ; (2)( )2002(1.5)2003(1)2004_.2、(1)若,则= ; (2)已知am=2,an=3,则am+2n= .3、(1) (2)4、(1)(ab)(ba)2m(ba)3=_ (2) 5、(1)2x+13x-1=144,则x= ;(2)若,则= .6、如果时, 代数式的值为2008,则当时,代数式的值是 三、【综合应用】1、计算:(1)(103)3 (2)(x4)7 (3)(x)47 (4)(a-b)35(b-a)73 (5)(-a)325 (6) -(-m3)2(-m)23 (7) (-a-b)32 -(a+b)23 2、(1); (2)(x-y)3(y
5、-x)2(y-x)5 3、已知,求的值4、若52x+1=125,求(x2)2005+x的值5、已知2a=3,2b=12,2c=6,试问a、b、c之间有怎样的关系?请说明理由6、有理数a, b,满足, 求+1的值7、若的积中不含与项,(1)求、的值; (2)求代数式的值;14-2【知识回顾】一、【基础训练】(一)公式1、平方差公式:注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如: = 2、完全平方公式:完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。公式的变形使用:(1);
6、 ;(2)三项式的完全平方公式: (二)因式分解1、提公因式法(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项(3)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的2、公式法运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:(1)平方差公
7、式: a2b2 (ab)(ab)(2)完全平方公式: a22abb2(ab)2 a22abb2(ab)2(3)公式变形: 位置变化:(x+y)(-y+x)符号变化:(-x+y)(-x-y)指数变化:(x2+y2)(x2-y2)4系数变化:(2a+b)(2a-b)换式变化:xy+(z+m)xy-(z+m)增项变化:(x-y+z)(x-y-z)连用公式变化:(x+y)(x-y)(x2+y2)逆用公式变化:(x-y+z)2-(x+y-z)23、十字相乘法.(1)二次项系数为1的二次三项式直接利用公式进行分解。特点:二次项系数是1;常数项是两个数的乘积;一次项系数是常数项的两因数的和。练习1、分解因式
8、(1) (2) (3)(2)二次项系数不为1的二次三项式条件:(1) (2) (3) 分解结果:=练习2、分解因式:(1) (2)(3)二次项系数为1的齐次多项式例1:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习3、分解因式(1) (2) (3)(4)二次项系数不为1的齐次多项式例2、 例3、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式= 解:原式=练习4、分解因式:(1) (2)(三)课堂练习1、4a3+8
9、a2+24a=4a( )2、(a3)(32a)= (3a)(32a)3、a3bab3=ab(ab)( )4、(1-a)mn+a1=( )(mn1)5、0.0009x4=( )26、x2( )+ =(x )27、( )a2-6a+1=( )28、x2y2z2+2yz=x2( )=( )( )9、2ax10ay+5bybx=2a( )b( )=( )( )10、x2+3x-10=(x )(x )11、若m23m+2=(m+a)(m+b),则a= ,b= ;12、a2-bc+ab-ac=(a2+ab)( )=( )( )13、当m= 时,x2+2(m3)x+25是完全平方式.二、【基础过关】1、若的
10、运算结果是,则的值是( ) A、-2 B、2 C、-3 D、32、若x2+2(m-3)x+16是完全平方式,则m的值等于( )A、3 B、-5 C、7 D、7或-13、如图,矩形花园ABCD中,AB=,AD=,花园中建有一条矩形道路LMQP及一条平行四边形道路RSTK,若LM=RS=,则花园中可绿化部分的面积为( )A、 B、C、 D、4、若为整数,则一定能被( )整除 A、2 B、3 C、4 D、55、下列各式中,能用平方差公式分解因式的是( )A、ab B、ab C、ab D、(a)b6、若9xmxy16y是一个完全平方式,那么m的值是( )A、24 B、24 C、12 D、127、若aa
11、1,则a42a3a4a3的值为( )A、8 B、7 C、10 D、128、已知xy2x6y10=0,那么x,y的值分别为( )A、x=1,y=3 B、x=1,y=3 C、x=1,y=3 D、x=1,y=39、把(m3m)48(m3m)16分解因式得( )A、(m1)4(m2) B、(m1)(m2)(m3m2)C、(m4)(m1) D、(m1)(m2)(m3m2)三、【综合应用】1、符号变换: (1)(m+n)(x-y)+(m-n)(y-x) (2)-a2-2ab-b22、系数变换: (1)4x2-12xy+9y2 (2)3、指数变换:(1)x4-y4 (2)a4-2a4b4+b44、展开变换:
12、(1)a(a+2)+b(b+2)+2ab (2)x(x-1)-y(y-1)5、拆项变换: (1)3a3-4a+1 (2)3a3+5a2-26、添项变换:(1)x2+4x-12 (2)x2-6x+8 (3)a4+47、综合练习(1) (2) (3)(4) (5) (6)(7) (8)【能力提高】1、若M、N分别是关于的7次多项式与5次多项式,则MN( )A、一定是12次多项式 B、一定是35次多项式C、一定是不高于12次的多项式 D、无法确定其积的次数2、如果(x-4)(x+8)=x2+mx+n,那么m、n的值分别是( )A、m= 4,n=32 B、m= 4,n=-32 C、m= -4,n=32
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 乘法 因式分解 提高
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。