中考数学十大解题思路之换元法.doc
《中考数学十大解题思路之换元法.doc》由会员分享,可在线阅读,更多相关《中考数学十大解题思路之换元法.doc(14页珍藏版)》请在咨信网上搜索。
1、中学数学中换元法的应用与常见错误分析目录第一章 引言 4第二章在因式分解中的应用 4第三章在化简二次根式中的应用 53.1设元代数,化已知为未知 53.2设元代式,无理变有理 5第四章在解方程中的应用 64.1分式方程 64.2一元二次方程 74.3三角有理方程 7第五章在证明不等式中的应用 85.1三角换元法 85.2改变换元后中间变量的范围 9第六章换元法常见错误分析 96.1将复合函数与原函数混为一谈 96.2改变换元后中间变量的范围 106.3换元的选择不恰当 11结论 12参考文献 12 第一章 引言换元法是中学数学中一个非常重要而且应用十分广泛的解题方法。所谓换元法,就是在一个比较
2、复杂的数学式子中,用新的变量来代替原式的一部分或改造原来的式子,使其简化,问题便于解决。之所以说换元法重要,是因为换元思想是中学教学中要求掌握并熟练应用的。在中考、高考的试卷也常出现运用换元法的试题。之所以说换元法应用广泛,是因为在因式分解、化简二次根式、解方程、证明不等式等许多题型中都会运用到换元的思想。同时,由于学生概念不清,在换元过程中往往会出现这样那样的错误,因此需要对常见错误进行分析,防止犯错。本文探讨了换元法运用的最为常见也是最为重要的几个问题,还指出了换元法运用中的常见错误以及如何解决这些错误的方法。第二章换元法在因式分解中的应用因式分解是初中代数课中一种重要的恒等变形,它是分式
3、通分、约分、解方程以及三角函数的基础。学好因式分解,对以后数学的学习有着非常重要的意义。除教材上介绍的因式分解的方法外,换元法也是一种比较常用的方法。例1.分解因式: (济南市 2007)分析:如果将原式变形,就会得到一个二次多项式,不利于因式分解。换个角度考虑,可以将看成一个整体,则原式就变成这个整体为未知量的二次多项式。解:设 原式 例2.分解因式:分析:本题如果展开,就会出现四次多项式,不利于因式分解。因此可以尝试用换元法进行因式分解。观察原式中各个局部之间的简单运算关系,有: ,将其中两部分设为辅助元,则可以表示出第三部分。解:设,,则。原式使用换元法的关键是选择辅助元。在选择辅助元时
4、,要反复比较式子中重复出现的整体结构,以便寻找最恰当的辅助元。第三章换元法在化简二次根式中的应用在化简二次根式的过程中,常常会因为根式下的式子过于复杂而无从下手,这时可以考虑通过换元将复杂的式子简单化,从而有助于二次根式的化简,下面介绍两种应用换元法化简二次根式的方法。3.1设元代数,化已知为未知例3.若,求的值分析:是一个较大、带根号的无理数,直接代入较复杂,因此可以尝试用字母换元代入。解:设,则,且原式3.2设元代式,无理变有理例4. 化简(陕西省 2008)分析:本题中的式子较复杂,可以利用换元,将无理式转化为有理式,便于计算。解:设, 原式 解题时,根据需要,把较大的数字或复杂的式子用
5、字母代换,这样会使得式子中的各种关系更加明朗,化简或计算也会更加简便。第四章换元法在解方程中的应用除了课本中介绍的解方程的基本方法以外,换元法也是解方程的一种常用的方法。如果方程的左端是一个复合函数:,而方程和是比较简单的方程,则可进行换元。令,这样方程就转化为,方便运算。但值得注意的是,换元后的方程定义域发生了变化,应考虑增根或失根的可能。下面就列举三种常见的用换元法可解的方程类型及换元方法。4.1分式方程形如令,原方程化为,即 解得,原方程化为两个简单方程,注意检验根。例5.解方程分析:此分式方程左边的两个分式互为倒数,可采用换元法来解。解:设,则,原方程化为解得,当时,有,即,解得当时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 解题 思路 换元法
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。