2003年考研数学二试题及答案.doc
《2003年考研数学二试题及答案.doc》由会员分享,可在线阅读,更多相关《2003年考研数学二试题及答案.doc(23页珍藏版)》请在咨信网上搜索。
1、2003年考研数学(二)真题评注一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若时, 与是等价无穷小,则a= .(2) 设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) 的麦克劳林公式中项的系数是 .(4) 设曲线的极坐标方程为 ,则该曲线上相应于从0变到的一段弧与极轴所围成的图形的面积为 .(5) 设为3维列向量,是的转置. 若,则= .(6) 设三阶方阵A,B满足,其中E为三阶单位矩阵,若,则 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在
2、题后的括号内)(1)设均为非负数列,且,则必有(A) 对任意n成立. (B) 对任意n成立.(C) 极限不存在. (D) 极限不存在. (2)设, 则极限等于 (A) . (B) . (C) . (D) . (3)已知是微分方程的解,则的表达式为 (A) (B) (C) (D) (4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. y O x (5)设, 则 (A) (B) (C) (D) (6)设向量组I:可由向量组II:线性表示,
3、则 (A) 当时,向量组II必线性相关. (B) 当时,向量组II必线性相关. (C) 当时,向量组I必线性相关. (D) 当时,向量组I必线性相关. 三 、(本题满分10分)设函数 问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分) 设函数y=y(x)由参数方程所确定,求五 、(本题满分9分) 计算不定积分 六 、(本题满分12分) 设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.七 、(本题满分12分) 讨论
4、曲线与的交点个数.八 、(本题满分12分) 设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx在上的弧长为,试用表示曲线y=f(x)的弧长s.九 、(本题满分10分)有一平底容器,其内侧壁是由曲线绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以的速率向容器内注入液体时,液面的面积将以的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t时刻液面的面积,写出t与之间的关系式;(2) 求曲线的方程.(注:m表示长度单位米,min表示时
5、间单位分.)十 、(本题满分10分)设函数f(x)在闭区间a,b上连续,在开区间(a,b)内可导,且 若极限存在,证明:(1) 在(a,b)内f(x)0;(2) 在(a,b)内存在点,使 ;(3) 在(a,b) 内存在与(2)中相异的点,使 十 一、(本题满分10分)若矩阵相似于对角阵,试确定常数a的值;并求可逆矩阵P使 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 , , .试证这三条直线交于一点的充分必要条件为1. 【分析】 根据等价无穷小量的定义,相当于已知,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当时,.于是,根据题设有 ,故a=
6、-4.【评注】 本题属常规题型,完全类似例题见数学复习指南P.38 【例1.62】.2. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式两边直接对x求导,得 ,将x=1,y=1代入上式,有 故过点(1,1)处的切线方程为 ,即 【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见数学复习指南P.55 【例2.13】和【例2.14】.3. 【分析】 本题相当于先求y=f(x)在点x=0处的n阶导数值,则麦克劳林公式中项的系数是【详解】 因为 ,于是有 ,故麦克劳林公式中项的系数是【评注】 本题属常规题型,在一般教材中都可找到答案
7、.4. 【分析】 利用极坐标下的面积计算公式即可.【详解】 所求面积为 =.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见数学复习指南P.200 【例7.38】.5. 【分析】 本题的关键是矩阵的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由=,知,于是【评注】 一般地,若n阶矩阵A的秩为1,则必有完全类似例题见数学复习指南P.389 【例2.11】和考研数学大串讲P.162 【例13】.6. 【分析】 先化简分解出矩阵B,再取行列式即可.【详解】 由知
8、, ,即 ,易知矩阵A+E可逆,于是有 再两边取行列式,得 ,因为 , 所以 .【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见考研数学大串讲P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】 用举反例法,取,则可立即排除(A),(B),(C
9、),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见数学最后冲刺P.179.8. 【分析】 先用换元法计算积分,再求极限.【详解】 因为 = =,可见 =【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法. 9. 【分析】 将代入微分方程,再令的中间变量为u,求出的表达式,进而可计算出.【详解】将代入微分方程,得 ,即 .令 lnx=u,有 ,故 = 应选(A). 【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2003 考研 数学 试题 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。