fft-原理详解.doc
《fft-原理详解.doc》由会员分享,可在线阅读,更多相关《fft-原理详解.doc(30页珍藏版)》请在咨信网上搜索。
1、FFT算法FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。采样得到的数字信号,就可以做FFT
2、变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N
3、+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点
4、n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n1,且n=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
5、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。图
6、1 FFT结果 从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:1点: 512+0i2点: -2.6195E-14 - 1.4162E-13i3点: -2.8586E-14 - 1.1898E-13i50点:-6.2076E-13 - 2.1713E-12i51点:332.55 - 192i52点:-1.6707E-12 - 1.5241E-12i75点:-2.2199E-13 -1.0076E-12i76点:3.4315E-12 + 192i77点:-3.0263E-14 +7.5609E-13i 很明显,1点、51点、76点的值都
7、比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:1点: 51251点:38476点:192 按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。 然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-
8、0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐
9、标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。附录:本测试数据使用的matlab程序实例一:S=2+3cos(2pi*50t-pi/6)+1.5cos(2pi*75t+pi/2)close all; %先关闭所有图片Adc=2; %直流分量幅
10、度A1=3; %频率F1信号的幅度A2=1.5; %频率F2信号的幅度F1=50; %信号1频率(Hz)F2=75; %信号2频率(Hz)Fs=256; %采样频率(Hz)P1=-30; %信号1相位(度)P2=90; %信号相位(度)N=256; %采样点数t=0:1/Fs:N/Fs; %采样时刻%信号S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);%显示原始信号plot(S);title(原始信号);figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y); %取模plot(Ayy(1:N
11、); %显示原始的FFT模值结果title(FFT 模值);figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=(1:N-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2); %显示换算后的FFT模值结果title(幅度-频率曲线图);figure;Pyy=1:N/2;for i=1:N/2Pyy(i)=phase(Y(i); %计算相位Pyy(i)=Pyy(i)*180/pi; %换算为角度end;plot(F(1:N/2),Pyy(1:N/2); %显示相位图title(相位-频率曲线图);实例一:S=1+0
12、.1cos(2pi*20t)+0.2cos(2pi*60t)close all; %先关闭所有图片Adc=1; %直流分量幅度A1=0.1; %频率F1信号的幅度A2=0.2; %频率F2信号的幅度F1=20; %信号1频率(Hz)F2=60; %信号2频率(Hz)Fs=256; %采样频率(Hz)P1=0; %信号1相位(度)P2=0; %信号相位(度)N=256; %采样点数t=0:1/Fs:N/Fs; %采样时刻%信号S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);%显示原始信号plot(S);title(原始信
13、号);figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y); %取模plot(Ayy(1:N); %显示原始的FFT模值结果title(FFT 模值);figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=(1:N-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2); %显示换算后的FFT模值结果title(幅度-频率曲线图);figure;Pyy=1:N/2;for i=1:N/2Pyy(i)=phase(Y(i); %计算相位Pyy(i)=Pyy(i)*180/pi; %换算为角度
14、end;plot(F(1:N/2),Pyy(1:N/2); %显示相位图title(相位-频率曲线图);实例三close all; %先关闭所有图片Adc=2; %直流分量幅度A1=3; %频率F1信号的幅度F1=50; %信号1频率(Hz)P1=-30; %信号1相位(度)A2=1.5; %频率F2信号的幅度F2=75; %信号2频率(Hz)P2=90; %信号相位(度)Fs=512; %采样频率(Hz)N=1024; %采样点数t=0:1/Fs:(N-1)/Fs; %采样时刻%信号S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P
15、2/180);% 显示原始信号plot(S);title(原始信号);% FFT变换后figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y); %取模plot(Ayy(1:N); %显示原始的FFT模值结果title(FFT 模值);% 幅度频率曲线图figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=(1:N-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2); %显示换算后的FFT模值结果title(幅度-频率曲线图);% 相位频率曲线图figure;Pyy=1:N/2;for i
16、=1:N/2 Pyy(i)=phase(Y(i); %计算相位 Pyy(i)=Pyy(i)*180/pi; %换算为角度end;plot(F(1:N/2),Pyy(1:N/2); %显示相位图title(相位-频率曲线图);实例四关于FFT的相位谱 (2011-07-13 11:41:56)转载标签:相位谱正弦信号延拓进行it分类:机械技术先看一下我收到的程序,作为研究对象的信号是这样产生的:T=128;N=128;dt=T/N;t=dt*(1:N);x=2*cos(2*t-pi/4);.(我觉得这个信号存在一点问题,因为t是从1开始的,所以它的初相应该和-pi/4有点差别吧。)为什么进行FF
17、T,用angle得到相位频率特性却不能反映这个信号的初始相位?胡广书的数字信号处理理论、算法与实现(第二版)第三章第八节关于正弦信号抽样的讨论,得出了关于正弦信号抽样的六个结论,最后总结了一个总的原则:抽样频率应为信号频率的整数倍,抽样点数应包含整周期。书中的结论五与采样频率和抽样点数有很大的关联。结论五主要说只有满足了上面的那个总的原则,频谱泄漏才不会发生。我想不光是幅度谱的频谱泄漏现象,抽样频率和抽样点数同样会对相位谱产生影响。考虑一个无限长的正弦信号(相当于初相为90),如果我们截取它的整数个周期,然后对截短的信号进行周期延拓,则得到的延拓的信号与原无限长正弦没有区别。现在我们再次对这个
18、无限长的正弦进行截短,长度为1.5个周期,然后对截短信号进行周期延拓,看看我们得到了什么?下图、无限长正弦:下图、截短信号下图、对截短信号周期延拓:可以看出,此时进行周期延拓得到的信号与原来的正弦信号大相径庭。新的周期信号是一个周期的偶函数,原无限长正弦是一个周期的奇函数,两者奇偶性都不一样了,因此不能指望利用新的信号的DFT求出原信号的初相。exp(-jt)=cos(t)-jsin(t),进行变换的时候,若f(t)为实偶函数,则f(t)sin(t)就是奇函数,对一个奇函数在对称区间内积分只能得到0,因此实偶函数的傅立叶变换肯定是实的,对一个实数用angle求相位,当然相位是0。而原正弦肯定是
19、初相为90。我想这就是问题所在,DFT就是DFS,只不过DFT先将有限长信号进行周期延拓,然后求DFS,再截取一个周期。使用DFT,在有限的观测时间内采集信号的信息。如若观测时间内正好得到了整数个正弦周期,则DFT的周期延拓可以不失真的表示原正弦,可是如果观测时间内得到的信号不是整数个周期,那么问题随之而来,就像上面的例子,观测时间内得到了1.5个周期的正弦,然后进行周期延拓,显然乱了套。如果满足了胡广书老师所总结的抽样条件,则对正弦的DFT谱无疑可以很好地反映初相,我写了两个例子:第一个例子,信号只包含一个正弦:t=linspace(0,2-0.125,16);x=cos(2*pi*t+pi
20、/4);X=fft(x);stem(abs(X);figure;stem(angle(X)/pi*180);幅度谱:相位谱:可以看见DFT相位谱第三个点对应正弦的相位,刚好是45。第二个例子信号中包含两个正弦:t=linspace(0,2-0.125,16);x=cos(2*pi*t+pi/4)+2*cos(2*pi*0.5*t+pi/8);X=fft(x);stem(abs(X);figure;stem(angle(X)/pi*180);幅度谱:相位谱:可以看见DFT相位谱第二个和第三个点对应两个正弦的相位,刚好是22.5和45。如果没有满足上面所说的条件,就会得到不准确的结果,有兴趣可试试
21、下面的代码:t=linspace(0,2.5-0.125,32);x=cos(2*pi*t+pi/4);X=fft(x);stem(abs(X);figure;stem(angle(X)/pi*180);如何克服这个问题?我觉得这非常困难。在不能预知信号频率的情况下,无法确定采样频率和观测点数。也许可以先进行一次观测,通过幅度谱估计出正弦的频率,然后根据频率调整抽样频率,重新对信号进行采样,使采样符合上面所述的条件。但是这样做有很多的问题,例如硬件可能不好实现。而且虽然第二次调整了采样频率和抽样点数,可是初始相位已经无法得到了,因为第二次采样不可能再从零时刻开始。Sandygreta同学说可以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- fft 原理 详解
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。