2023年初中几何知识点.doc
《2023年初中几何知识点.doc》由会员分享,可在线阅读,更多相关《2023年初中几何知识点.doc(11页珍藏版)》请在咨信网上搜索。
第一章 相交线与平行线 1. 邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角 是邻补角,如∠1与∠2。且∠1+∠2=180° 2. 对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互 为对顶角,如∠2与∠4。 对顶角的性质:对顶角相等,即∠2=∠4,∠1=∠3 3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 4.平行线:在同一平面内,不相交的两条直线叫做平行线。 5.同位角、内错角、同旁内角: 同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。 内错角:∠4与∠6像这样的一对角叫做内错角。 同旁内角:∠4与∠5像这样的一对角叫做同旁内角。 6.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 8.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 9.平行线的鉴定: 鉴定1:同位角相等,两直线平行。 鉴定2:内错角相等,两直线平行。 鉴定3:同旁内角相等,两直线平行。 第二章 三角形知识点 三角形 不等腰三角形 (至少两边相等) 等腰三角形 底边和腰不等的等腰三角形 等边三角形(三边都相等) 1.三角形按边分类 (注:按角分类可分为钝角三角形、直角三角形,锐角三角形) 2. 三角形三边的关系(重点) 三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。 用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c 或c-b<a。 应用:(1)判断三条线段能否组成三角形 方法:两短边之和大于第三边 (2)已知三角形两边的长度分别为a,b,求第三边长度的范围 方法:第三边长度的范围:|a-b|<c<a+b(即:两边之差<第三边<两边之和) 3.三角形的高、中线与角平分线 (1)三角形的高 从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。三角形的三条高的交于一点。 (2) 三角形的中线 连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC 的边BC上的中线。 三角形的中线可以将三角形分为面积相等的两个小三角形。即S△ABD=S△ADC (3) 三角形的角平分线 ∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。 如图∠1=∠2 要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角 平分线是条线段;角的平分线是条射线。 三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。 4.三角形的内角 (1)三角形的内角和定理 三角形的内角和为180°,与三角形的形状无关。 如图∠A+∠B+∠C=180° (2) 直角三角形两个锐角的关系 直角三角形的两个锐角互余(即∠A+∠C=90°)。 有两个角互余的三角形是直角三角形。 5. 三角形的外角 (1) 三角形外角的意义 三角形的一边与另一边的延长线组成的角叫做三角形的外角,如图∠ACD即为△ABC的外角。 ∠1、∠2、∠3、∠4、∠5、∠6均为外角 (2) 三 角形外角的性质 三角形的一个外角等于与它不相邻的两个内角之和。如图∠ACD=∠A+∠B 三角形的一个外角大于与它不相邻的任何一个内角。如图∠ACD>∠A,∠ACD>∠B 6.多边形 (1)多边形的概念 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相 邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角 叫做外角。连接多边形不相邻的两个顶点的线段叫做多边形的对角线。 一个n边形从一个顶点出发的对角线的条数为(n-3)条,把多边形 提成(n-2)个三角形,所以其内角和为,其所有的对角线 条数为.所有多边形的外角和都是360°。 (2)正多边形 各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,由于若三角形的三内角相等,则必有三边相等,反过来也成立) 总结:1. n边形的内角和定理:n边形的内角和为 3. n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。 第三章 全等三角形 1.全等三角形的性质: 全等三角形的相应边相等;全等三角形的相应角相等;全等三角形的周长、面积相等。 (注:全等三角形的形状和大小同样) 如图,△ABC≌△DEF,读作三角形ABC全等于三角形DEF(注意,相应顶点 应写在相应的位置上,即点A对点D,点B相应点E,点C相应点F) 2.两个三角形全等的鉴定(即如何判断两个三角形全等)【重点】 (注:找两个三角形全等的条件时,公共边、公共角、对顶角都是相应角,如下图BC是两个三角形的公共边,即BC=BC;∠A是两个三角形的公共角,即∠A=∠A,∠BAC、∠DAE是对顶角,即∠BAC=∠DAE) 3.角平分线的 (1)定义:从一个角的顶点出发把一个角提成两个相等的角的射线叫做角的平分线。 如右图:OC平分∠AOB ∵OC平分∠AOB ∴∠1=∠2 (2)性质:角平分线上的点到角的两边的距离相等。【重点】 如上图: ∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE此 (3)鉴定:角的内部到角的两边距离相等的点在角的平分线上。 如上图: ∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2) 第四章 等腰三角形 1.线段的中点的定义:把一条线段提成两条相等的线段的点叫做线段的中点。 如右图: ∵C是AB的中点 ∴AC=BC 2.垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。 如右图:【重点】 ∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的 一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。 3.垂直平分线 (1)性质:线段的垂直平分线上的点到线段两个端点的距离相等 ∵直线l垂直平分AB(或PC⊥AB,AC=BC) ∴PA=PB (2)鉴定:到线段两个端点距离相等的点在线段的垂直平分线上 ∵PA=PB ∴点P在AB的垂直平分线上 4、 等腰△的性质: (1) 两个底角相等,简写为“等边对等角” ∵在△ABC中,AB=AC ∴∠B=∠C (2)等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合,简写为“三线合一” 如图,在△ABC中, 性质2:(1)∵AB=AC,∠1=∠2 ∴AD⊥BC,BD=DC (2)∵AB=AC,BD=DC ∴ AD⊥BC,∠1=∠2 (3)∵AB=AC,AD⊥BC ∴ BD=DC,∠1=∠2 5. 等边△的性质:(1)三条边都相等; (2)三个内角都相等,并且每一个角都等于60°; (3)三条边上的高、中线、角平分线都互相重合,即三条边都满足三线合一。 6. 等边△的鉴定:(1)三条边都相等的三角形是等边三角形; (2)三个角都相等的三角形是等边三角形; (3)有一个角是60°的等腰三角形是等边三角形。 7. 在直角三角形中,假如一个锐角等于30度,那么它所对的直角边等于斜边的一半 ∵在Rt△ABO中,∠B=30° ∴ AO=AB 平行四边形 定义:两组对边分别平行的四边形叫做平行四边形 性质: 边 :对边平行且相等,即AB 角 : 对角相等,邻角互补 对角线:互相平分 鉴定: 边 定义法: 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 有一组对边平行且相等的四边形是平行四边形 角: 两组对角分别相等的四边形是平行四边形 对角线 :对角线互相平分的四边形是平行四边形 矩形 定义:有一个角是直角的平行四边形叫做矩形 性质: 边:对边平行且相等 角:对角相等,邻角互补 有一个角是直角 矩形的四个角都是直角 对角线: 矩形的对角线互相平分 且相等 鉴定: 角 定义法:有一个角是直角的平行四边形是矩形 有三个角是直角的四边形是矩形 对角线:对角线相等是平行四边形是矩形 菱形 定义:有一组邻边相等的平行四边形叫做菱形 性质: 边 对边平行 对边相等 有一组邻边相等 四条边都相等 角:对角相等,邻角互补 对角线 :菱形的两条对角线互相平分且互相垂直,并且每一条对角线平分一组对角 鉴定 : 边 定义法:有一组邻边相等的平行四边形是菱形 四条边都相等的四边形是菱形 对角线 :对角线互相垂直的平行四边形是菱形 菱形是轴对称图形,两条对角线为它的对称轴。 正方形 定义:有一组邻边相等,且有一个角是直角的平行四边形是正方形。 性质: 边 对边互相平行 对边相等 有一组邻边相等 四条边都相等 角 :对角相等,邻角互补 有一个角是直角 四个角都是直角 对角线:互相平分且相等且互相垂直,每一条对角线平分一组对角 正方形是轴对称图形,有四条对称轴。 鉴定 有一组邻边相等并且有一个直角的平行四边形是正方形 有一组邻边相等的矩形叫做正方形 有一个角是直角的菱形叫做正方形 提醒:判断一个四边形是正方形,关键是先鉴定这个四边形是平行四边形,再鉴定这个四边形是菱形(或矩形),最后鉴定这个平行四边形还是矩形(或菱形)。但由于鉴定平行四边形、矩形、菱形的方法各异,所给出的条件不尽相同,所以鉴定一个四边形是正方形的具体过程方法也得视情况而定。 相关性质 平行线段:两条平行线之间的任何两条平行线段都相等 两条平行线之间的距离相等 连接三角形两边中点的线段叫做三角形的中位线 三角形的中位线平行于三角形的第三边,并且等于第三边的一半 直角三角形斜边上的中线等于斜边的一半。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 几何 知识点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文