-机械优化设计复习试题与答案.doc
《-机械优化设计复习试题与答案.doc》由会员分享,可在线阅读,更多相关《-机械优化设计复习试题与答案.doc(11页珍藏版)》请在咨信网上搜索。
1、机械优化设计复习题一.单项选择题 1一个多元函数在X* 附近偏导数连续,则该点位极小值点的充要条件为( )A B. ,为正定C D. ,为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应( ) A B. C. D. 3目标函数F(x)=4x+5x,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A1B 19.05C0.25D0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式(X,M(k)为( )。 A. ax+b+M(k)min0,c+x2,M(k)为递
2、增正数序列 B. ax+b+M(k)min0,c+x2,M(k)为递减正数序列 C. ax+b+M(k)maxc+x,02,M(k)为递增正数序列hn D. ax+b+M(k)maxc+x,02,M(k)为递减正数序列1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B 5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。 A.0.382
3、 B.0.186 C.0.618 D.0.8166.F(X)在区间x1,x3上为单峰函数,x2为区间中一点,x4为利用二次插值法公式求得的近似极值点。如x4-x20,且F(x4)F(x2),那么为求F(X)的极小值,x4点在下一次搜索区间内将作为( )。 A.x1 B.x3 C.x2 D.x47.已知二元二次型函数F(X)=,其中A=,则该二次型是( )的。 A.正定 B.负定 C.不定 D.半正定8.内点罚函数法的罚因子为( )。 A.递增负数序列 B.递减正数序列 C.递增正数序列 D.递减负数序列9.多元函数F(X)在点X*附近的偏导数连续,F(X*)=0且H(X*)正定,则该点为F(X
4、)的( )。 A.极小值点 B.极大值点 C.鞍点 D.不连续点10.F(X)为定义在n维欧氏空间中凸集D上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D上的( )。 A.凸函数 B.凹函数 C.严格凸函数 D.严格凹函数1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B 11.在单峰搜索区间x1 x3 (x1x4,并且其函数值F(x4)F(x2),
5、则取新区间为( )。 A. x1 x4 B. x2 x3 C. x1 x2 D. x4 x312.用变尺度法求一n元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) A. n次 B. 2n次 C. n+1次 D. 2次13.在下列特性中,梯度法不具有的是( )。 A.二次收剑性 B.要计算一阶偏导数 C.对初始点的要求不高 D.只利用目标函数的一阶偏导数值构成搜索方向14.外点罚函数法的罚因子为( )。 A.递增负数序列 B.递减正数序列 C.递增正数序列 D.递减负数序列15.内点惩罚函数法的特点是( )。 A能处理等式约束问题 B.初始点必须在可行域中 C.初始点可以在可行域外
6、 D.后面产生的迭代点序列可以在可行域外16.约束极值点的库恩塔克条件为F(X)=,当约束条件gi(X)0(i=1,2,m)和i0时,则q应为 ( )。 A.等式约束数目; B.不等式约束数目; C.起作用的等式约束数目 D.起作用的不等式约束数目17 已知函数F(X)=-,判断其驻点(1,1)是( )。 A.最小点 B.极小点 C.极大点 D.不可确定18对于极小化F(X),而受限于约束g(X)0(=1,2,m)的优化问题,其内点罚函数表达式为( ) A. (X, r(k)=F(X)-r(k) B. (X, r(k)=F(X)+r(k) C. (X, r(k)=F(X)-r(k) D. (X
7、, r(k)=F(X)-r(k)19. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( )A. 梯度法 B. Powell法 C. 共轭梯度法 D. 变尺度法1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B 20. 利用0.618法在搜索区间a,b内确定两点a1=0.382,b1=0.618,由此可知区间a,b的值是( )A. 0,0.382 B. 0.382,1
8、 C. 0.618,1 D. 0,121. 已知函数F(X)=x12+x22-3x1x2+x1-2x2+1,则其Hessian矩阵是( )A. B. C. D. 22. 对于求minF(X)受约束于gi(x)0(i=1,2,m)的约束优化设计问题,当取i0时,则约束极值点的库恩塔克条件为( )A. F(X)=,其中i为拉格朗日乘子B. F (X)= ,其中i为拉格朗日乘子C. F(X)= ,其中i为拉格朗日乘子,q为该设计点X处的约束面数D. F(X)= ,其中i为拉格朗日乘子,q为该设计点X处的约束面数23. 在共轭梯度法中,新构造的共轭方向S(k+1)为( )A. S(k+1)= F(X(
9、k+1)+(k)S(K),其中(k)为共轭系数B. S(k+1)=F(X(k+1)(k)S(K),其中(k)为共轭系数C. S(k+1)=-F(X(k+1)+(k)S(K),其中(k)为共轭系数D. S(k+1)=-F(X(k+1)(k)S(K),其中(k)为共轭系数24. 用内点罚函数法求目标函数F(X)=ax+b受约束于g(X)=c-x0的约束优化设计问题,其惩罚函数表达式为( )A. ax+b-r(k),r(k)为递增正数序列B. ax+b-r(k),r(k)为递减正数序列C. ax+b+ r(k),r(k)为递增正数序列D. ax+b+r(k),r(k)为递减正数序列25. 已知F(X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 优化 设计 复习 试题 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。