曲线拟合的研究.doc
《曲线拟合的研究.doc》由会员分享,可在线阅读,更多相关《曲线拟合的研究.doc(8页珍藏版)》请在咨信网上搜索。
1、曲线拟合的研究(时振宇, 刘禹, 彭波)1 综述(历史及应用)插值在数学发展史上是个老问题,它和拉格朗日,牛顿,高斯等著名的数学家的名字联系在一起的,它最初来源于天体计算由若干观测值计算任意时刻星球的位置(即插值点和插值)的需要。现在插值仍在诸如机械加工等工程技术和数据解决等科学研究中有许多直接应用.插值常用方法有拉格朗日多项式插值,分段线性插值,三次样条插值.拉格朗日插值是高次多项式插值(n1个节点上用不超过n次的多项式), 插值曲线光滑,误差估计有表达式,但有振荡现象,收敛性不能保证,这种插值重要用于理论分析,实际意义不大. 分段线性和三次样条插值石低次多项式插值,简朴实用,收敛性有保证,
2、但不光滑,三次样条插值的整体光滑性已大有提高,应用广泛,唯误差估计较困难.根据一组二维数据,即平面上的若干点,拟定一个一元函数,即曲线,使这些点与曲线总体来说尽量接近,这就是曲线拟合.线性最小二乘法是解决曲线拟合的最常用方法,基本思绪是, 令:其中rk(x)是事先选定的一组函数,ak是待定系数,拟合标准是使n个点(xi,yi) i=1,2,n与yf(xi)的距离的平方和最小,称最小二乘准则.本实验所用拟合方法使高次磨削法,原理在下面叙述.2 问题分析和算法3.1基本思绪我们一方面考虑等步长情况,不等步长可以在此基础上稍做改善而得。如图,(x1,y1) (x2,y2) (x3,y3) (x4,y
3、4) (x5,y5) 为所给原始数据点中的一部分,磨光过程中应对(x2,y2) (x3,y3) (x4,y4) 进行切削,图示第一次切削过程。然后还需对(p3,q3) (p4,q4)第二次磨削,如此反复。高次磨光后,最后一次切削所产生的(x2,y2)最右侧及(x3,y3)最左侧的折点均向(x2,y2) (x3,y3)中点(x23,y23)逼近,抱负情况下两点在(x23,y23)处重合,则磨削点(x2,y2)和(x3,y3)工作完毕。切削步长大小有规定,太小则无法对x23附近的点进行磨削,太大则在x23附近进行了多次磨削,设每次切削后步长变为原步长的1/n,第一次切削步长为h/a,m为切削次数,
4、则有:; 即;我们取a=2,n=2可符合规定,即每次的切削步长为h/2;图3-1 磨削算法示意图对点 (x j, y j) 进行一次切割将产生两个点(x j, y j), (x j+1,y j+1);由前面分析可知:假如现在由n个点,除去两个端点不需磨削,一次磨削后,将产生2*(n-2)+2个新的点,其坐标用行向量x,y表达;在求下一次磨削时,将x,y复制给行向量x,y,新的切削后的行纵坐标x,y可用上述方法得到。假如我们拟定了循环次数,则拟合完毕.3.2 初始点的移动为了使磨削后的点过原始点,需将原始点在磨削前移动一定距离,如图: x代表原始点坐标, x代表移动后的坐标.如此可得:y和x的计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲线拟合 研究
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。