上海市十校2022-2023学年数学高一上期末质量检测模拟试题含解析.doc
《上海市十校2022-2023学年数学高一上期末质量检测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市十校2022-2023学年数学高一上期末质量检测模拟试题含解析.doc(17页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(本大题共12小题,共60分) 1.关于不同的直线与不同的平面,有下列四个命题: ①, ,且,则 ②, ,且,则 ③, ,且,则 ④, ,且,则 其中正确命题的序号是 A.① ② B.②③ C.①③ D.③④ 2.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是() A.①② B.②③ C.③④ D.①④ 3.已知,且,则下列不等式恒成立的是( ) A. B. C. D. 4.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为( ) A. B. C. D. 5.下列函数中,以为最小正周期的偶函数是() A.y=sin2x+cos2x B.y=sin2xcos2x C.y=cos(4x+) D.y=sin22x﹣cos22x 6.若两条平行直线与之间的距离是,则m+n= A.0 B.1 C.-2 D.-1 7.已知函数的值域是() A. B. C. D. 8.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是 A.3 B.4 C.5 D.7 9.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为() A.1.012米 B.1.768米 C.2.043米 D.2.945米 10.下列关于集合的关系式正确的是 A. B. C. D. 11.已知函数y=a+sin bx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是( ) A. B. C. D. 12.将函数y=sin(2x+)的图象向右平移个单位长度后,得到的图象对应的函数解析式为( ) A. B. C. D. 二、填空题(本大题共4小题,共20分) 13.函数是定义在上周期为2的奇函数,若,则______ 14.已知扇形OAB的面积为,半径为3,则圆心角为_____ 15.已知定义在上的函数满足,且当时,.若对任意,恒成立,则实数的取值范围是______ 16.奇函数是定义在上的减函数,若,则实数的取值范围是_______ 三、解答题(本大题共6小题,共70分) 17.如图,三棱柱中,点是的中点. (1)求证:平面; (2)若平面,,,,求二面角的大小. 18.已知关于的函数. (1)若,求在上的值域; (2)存在唯一的实数,使得函数关于点对称,求的取值范围. 19.已知二次函数满足,且 求的解析式; 设,若存在实数a、b使得,求a的取值范围; 若对任意,都有恒成立,求实数t取值范围 20.已知函数 (1)求证:用单调性定义证明函数是上的严格减函数; (2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由; (3)若对任意,都存在及实数,使得,求实数的最大值. 21.已知集合,, (1)求集合A,B及. (2)若,求实数a的取值范围. 22.已知函数的部分图象如图所示. (Ⅰ)求函数的解析式; (Ⅱ)若为第二象限角且,求的值. 参考答案 一、选择题(本大题共12小题,共60分) 1、C 【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断. 【详解】对于①,若, ,且,显然一定有,故正确; 对于②,因为, ,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错; 对于③,若,// 且//,则一定有,故③正确; 对于④,, ,且,则与的位置关系不定,故④错 故正确的序号有:①③. 故选C 【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题. 2、B 【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解. 【详解】①,为幂函数,且的指数,在上为增函数,故①不可选; ②,,为对数型函数,且底数,在上为减函数,故②可选; ③,在上为减函数,在上为增函数,故③可选; ④为指数型函数,底数在上为增函数,故④不可选; 综上所述,可选的序号为②③, 故选B. 【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题. 3、D 【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断. 【详解】解:对A,令,, 则满足,但,故A错误; 对B,若使, 则需满足,但题中,故B错误; 对C,同样令,, 则满足,但,故C错误; 对D,在上单调递增, 当时,,故D正确. 故选:D. 4、C 【解析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式 【详解】由函数图象知,,, 解得,所以, 所以函数; 因为, 所以,; 解得,; 又,所以; 所以; 将函数的图象向右平移个单位长度后,得的图象, 即 故选: 5、D 【解析】A中,周期为,不是偶函数; B中,周期为,函数为奇函数; C中,周期为,函数为奇函数; D中,周期为,函数为偶函数 6、C 【解析】根据直线平行得到,根据两直线的距离公式得到,得到答案. 【详解】由,得,解得,即直线, 两直线之间的距离为,解得 (舍去), 所以 故答案选C. 【点睛】本题考查了直线平行,两平行直线之间的距离,意在考查学生的计算能力. 7、B 【解析】由于,进而得,即函数的值域是 【详解】解:因为, 所以 所以函数的值域是 故选:B 8、D 【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是 2,2.5,3,5,7,7.5,8,共计7个. 故选D 点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点. 9、B 【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长 【详解】解:由题得:弓所在的弧长为:; 所以其所对的圆心角; 两手之间的距离 故选:B 10、A 【解析】因为{0}是含有一个元素的集合,所以{0}≠,故B不正确; 元素与集合间不能划等号,故C不正确; 显然相等,故D不正确. 故选:A 11、C 【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C. 12、B 【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式 【详解】函数图像向右平移个单位, 由得,故选B 【点睛】本题考查函数图像变换:“左加右减,上加下减”,需注意“左加右减”时平移量作用在x上,即将变成,是函数图像平移了个单位,而非个单位 二、填空题(本大题共4小题,共20分) 13、1 【解析】根据给定条件利用周期性、奇偶性计算作答. 【详解】因函数是上周期为2的奇函数,, 所以. 故答案为:1 【点睛】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期. 14、 【解析】直接利用扇形的面积公式得到答案. 【详解】 故答案为: 【点睛】本题考查了扇形面积的计算,属于简单题. 15、 【解析】根据题意求出函数和图像,画出图像根据图像解题即可. 【详解】因为满足,即; 又由,可得,因为当时, 所以当时,,所以,即; 所以当时,,所以,即; 根据解析式画出函数部分图像如下所示;因为对任意,恒成立, 根据图像当时,函数与图像交于点, 即的横坐标即为的最大值才能符合题意,所以,解得, 所以实数的取值范围是:. 故答案为:. 16、 【解析】利用函数的奇偶性、单调性去掉不等式中的符号“”,可转化为具体不等式,注意函数定义域 【详解】解:由得, 又为奇函数,得, , 又是定义在,上的减函数, 解得: 即 故答案为: 【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“” 三、解答题(本大题共6小题,共70分) 17、 (1)见解析(2) 【解析】(1)连接,交于点,连接,根据三角形中位线得到,进而得到线面平行;(2)根据二面角的定义可证得是二面角的平面角,在三角形BD中求解即可 解析: (1)连接,交于点,连接. 因为是三棱柱,所有四边形为平行四边形. 所以是中点. 因为点是的中点,所以是的中位线, 所以, 又平面,平面,所以平面. (2)是二面角的平面角. 事实上,因为面,面,所以. 在中,,是底边的中点,所以. 因为,,, 所以平面, 因为平面,平面, 所以,, 所以是二面角的平面角. 在直角三角形 中,,, 所以 为等腰直角三角形, 所以. 18、(1) (2) 【解析】(1)由,得到,结合三角函数的性质,即可求解; (2)因为,可得,结合题意列出不等式,即可求解. 【小问1详解】 解:当,可得函数, 因为,可得,则, 所以在上值域为. 【小问2详解】 解:因为,可得, 因为存在唯一的实数,使得曲线关于点对称, 所以,解得,所以的取值范围即. 19、(1);(2)或;(3). 【解析】利用待定系数法求出二次函数的解析式; 求出函数的值域,再由题意得出关于a的不等式,求出解集即可; 由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围 【详解】解:设,因为,所以;; ;; ;解得:;; 函数,若存在实数a、b使得,则, 即,,解得或, 即a的取值范围是或; 由题意知,若对任意,都有恒成立, 即,故有, 由,; 当时,在上为增函数, ,解得,所以; 当,即时,在区间上单调减函数, ,解得,所以; 当,即时,, 若,则,解得; 若,则,解得, 所以,应取; 综上所述,实数t的取值范围是 【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题 20、(1)见解析; (2)存在,为; (3)2. 【解析】(1)先设,然后利用作差法比较与的大小即可判断; 假设函数的图像存在对称中心, (2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,; (3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求 【小问1详解】 设,则, ∴, ∴函数是上的严格减函数; 【小问2详解】 假设函数的图像存在对称中心, 则恒成立, 整理得恒成立, ∴, 解得,, 故函数的对称中心为; 【小问3详解】 ∵对任意,,都存在,及实数,使得, ∴, 即, ∴, ∴, ∵,,∴,, ∵,,∴,,, ∴,即, ∴, ∴,即的最大值为2 21、(1), ,; (2). 【解析】(1)解不等式得到集合,,进而可得; (2)先求,再根据得到,由此可解得实数的取值范围 【详解】(1)∵,∴且,解得,故集合. ∵,∴,解得,故集合. ∴. (2)由()可得集合,集合,则. 又集合,由得,解得, 故实数的取值范围是 22、 (1) ;(2) . 【解析】(1)根据图象可得周期,故.再根据图象过点可得.最后根据函数的图象过点可求得,从而可得解析式.(2)由题意可得,进而可求得和,再按照两角和的正弦公式可求得的值 试题解析: (1)由图可知,周期, ∴. 又函数的图象过点, ∴ , ∴, ∴, ∵, ∴ ∴, ∵函数图象过点, ∴, ∴, 所以. (2)∵为第二象限角且, ∴, ∴,, ∴ 点睛: 已知图象求函数解析式的方法 (1)根据图象得到函数的周期,再根据求得 (2)可根据代点法求解,代点时一般将最值点的坐标代入解析式;也可用“五点法”求解,用此法时需要先判断出“第一点”的位置,再结合图象中的点求出的值 (3)在本题中运用了代点的方法求得的值,一般情况下可通过观察图象得到的值- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 2022 2023 学年 数学 上期 质量 检测 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文