四川省三台中学实验学校2022-2023学年数学高一上期末综合测试试题含解析.doc
《四川省三台中学实验学校2022-2023学年数学高一上期末综合测试试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省三台中学实验学校2022-2023学年数学高一上期末综合测试试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.以下元素的全体不能够构成集合的是 A.中国古代四大发明 B.周长为的三角形 C.方程的实数解 D.地球上的小河流 2.若点在角的终边上,则的值为 A. B. C. D. 3.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是( ) A.4π B.2π C.π D. 4.已知,则() A.- B. C.- D. 5.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 6.幂函数的图象经过点,则() A.是偶函数,且在上单调递增 B.是偶函数,且在上单调递减 C.是奇函数,且在上单调递减 D.既不是奇函数,也不是偶函数,在上单调递增 7.函数(且)的图像必经过点() A. B. C. D. 8.已知,则的大小关系为() A. B. C. D. 9.已知函数,则下列说法正确的是() A.的最小正周期为 B.的图象关于直线 C.的一个零点为 D.在区间的最小值为1 10.函数的定义域是() A. B. C. D. 11.下列各式中与相等的是 A. B. C. D. 12.已知函数,且,,,则的值 A.恒为正 B.恒为负 C.恒为0 D.无法确定 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.已知角的终边过点,求_________________. 14.函数y=的定义域是______. 15.已知集合,,则集合中元素的个数为__________ 16.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.已知集合,关于的不等式的解集为 (1)求; (2)设,若集合中只有两个元素属于集合,求的取值范围 18.已知函数 (Ⅰ)求在区间上的单调递增区间; (Ⅱ)若,,求值 19.已知函数与. (1)判断的奇偶性; (2)若函数有且只有一个零点,求实数a的取值范围. 20.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人: 参加社会公益活动 未参加社会公益活动 参加社会实践活动 30 4 未参加社会实践活动 8 3 从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率; 在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率 21.设不等式的解集为集合A,关于x的不等式的解集为集合B. (1)若,求; (2)命题p:,命题q:,若p是q的必要不充分条件,求实数m的取值范围. 22.已知函数 (1)试判断函数的奇偶性并证明; 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、D 【解析】地球上的小河流不确定,因此不能够构成集合,选D. 2、A 【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案 【详解】由题意,点在角的终边上,即,则, 由三角函数的定义,可得 故选A 【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题. 3、C 【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案 【详解】函数, ∵对任意x∈R都有f(x1)≤f(x)≤f(x2), ∴f(x1)是最小值,f(x2)是最大值; ∴|x1﹣x2|的最小值为函数的半个周期, ∵T=2π, ∴|x1﹣x2|的最小值为π, 故选:C. 4、D 【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果. 【详解】由题意得, , 即, 所以. 故选:D. 5、C 【解析】利用空间位置关系的判断及性质定理进行判断或举反例判断 【详解】对于A,若n⊂平面α,显然结论错误,故A错误; 对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误; 对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确; 对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误 故选C 【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题 6、D 【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案. 【详解】设幂函数的解析式为:,将代入解析式得:,解得, 所以幂函数,所以既不是奇函数,也不是偶函数, 且,所以在上单调递增. 故选:D. 7、D 【解析】根据指数函数的性质,求出其过的定点 【详解】解:∵(且),且 令得,则函数图象必过点, 故选:D 8、B 【解析】先对三个数化简,然后利用指数函数的单调性判断即可 【详解】,,, 因为在上为增函数,且, 所以, 所以, 故选:B 9、D 【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可. 【详解】函数,周期为,故A错误; 函数图像的对称轴为,,, 不是对称轴,故B错误; 函数的零点为,,, 所以不是零点,故C错误; 时,,所以,即,所以,故D正确. 故选:D 10、A 【解析】利用对数函数的真数大于零,即可求解. 【详解】由函数,则,解得, 所以函数的定义域为. 故选:A 【点睛】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题. 11、A 【解析】利用二倍角公式及平方关系可得,结合三角函数的符号即可得到结果. 【详解】, 又2弧度在第二象限,故sin2>0,cos2<0, ∴= 故选A 【点睛】本题考查三角函数的化简问题,涉及到二倍角公式,平方关系,三角函数值的符号,考查计算能力. 12、A 【解析】根据题意可得函数是奇函数,且在上单调递增.然后由, 可得,结合单调性可得,所以,以上三式两边分别相加后可得结论 【详解】由题意得, 当时,,于是 同理当时,可得, 又, 所以函数是上的奇函数 又根据函数单调性判定方法可得在上为增函数 由, 可得, 所以, 所以, 以上三式两边分别相加可得, 故选A. 【点睛】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】先求出,再利用三角函数定义,即可得出结果. 【详解】依题意可得:, 故答案为: 【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目. 14、 【解析】要使函数有意义,需满足,函数定义域为 考点:函数定义域 15、2 【解析】依题意,故,即元素个数为个. 16、 【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解. 【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得, 将代入可得. 故答案为:. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1)或;(2). 【解析】(1)解分式不等式得集合A,解绝对值不等式得集合B,由集合的补运算和交运算的定义可得结论; (2)由(1)知集合P={-2,2,3},而集合Q中最大与最小值差为2,因此只有2,3是集合Q中的元素,从而得关于m的不等式,可得m的范围 试题解析: (1) 或 (2) ∵可知P中只可能元素2,3属于Q 解得 18、(Ⅰ),;(Ⅱ). 【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果; (Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值 【详解】(Ⅰ) 令,,得, 令,得;令,得. 因此,函数在区间上的单调递增区间为,; (Ⅱ)由,得 ,, 又,, 因此, 【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题. 19、(1)偶函数(2) 【解析】(1)根据奇偶性定义判断; (2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得 小问1详解】 ∵的定义域为R, ∴,∴为偶函数. 【小问2详解】 函数只有一个零点 即 即方程有且只有一个实根. 令,则方程有且只有一个正根. ①当时,,不合题意; ②当时,若方程有两相等正根,则,且,解得;满足题意 ③若方程有一个正根和一个负根,则,即时,满足题意. ∴实数a的取值范围为. 20、(1);(2). 【解析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率 基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率 【详解】解:从该班随机选1名学生, 该学生既未参加社会公益活动也未参加社会实践活动的概率 在参加社会公益活动,但未参加社会实践活动的8名同学中, 有5名男同学,,,,,三名女同学,,, 现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动, 基本事件总数, 被选中且未被选中包含的基本事件个数, 被选中且未被选中的概率 【点睛】本题考查概率的求法,考查古典概型等基础知识,属于基础题 21、(1)(2) 【解析】(1)求解A,B,根据交集、补集运算即可; (2)由题意转化为Ü,建立不等式求解即可. 【详解】(1), , 解得, 所以, 当时,由可得, 解得, 所以,, 所以 (2)由解得, 即, 因为命题p:,命题q:,且p是q的必要不充分条件, 所以Ü, 所以,且等号不同时成立,解得, 即实数m的取值范围为 【点睛】关键点点睛:根据充分条件、必要条件的意义,转化为集合间的包含、真包含关系,是解题的关键,属于中档题. 22、(1)为奇函数;证明见解析; (2). 【解析】(1)利用奇函数的定义即证; (2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求. 【小问1详解】 当时,,则, 当; 当时,,满足; 当时,,则, , 所以对,均有,即函数为奇函数; 【小问2详解】 ∵函数为R上的奇函数,且,,, 所以函数在上为增函数,则在定义域内为增函数, 解法一:因函数为奇函数,且在定义域内为增函数, 则当时,为增函数 当时, 因为,只需要,则; 解法二:因为函数为奇函数,且在定义域内为增函数, 则当时,为增函数 设对于任意,且, 则有 因为,则,又因为,则, 欲使当时,为增函数,则,所以, 当时,;;, 所以,为R上增函数时,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 三台 中学 实验学校 2022 2023 学年 数学 上期 综合测试 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文