2023年小升初数学必背定义定理公式.doc
《2023年小升初数学必背定义定理公式.doc》由会员分享,可在线阅读,更多相关《2023年小升初数学必背定义定理公式.doc(17页珍藏版)》请在咨信网上搜索。
小学数学必背定义定理公式 一、数的结识 (1)、基数:表达事物数量的自然数叫做基数。如:2、5、4、7等 (2)、序数:表达事物的排列顺序的自然数(0除外)叫做序数。如:第5个、第7组、第1名等。 1、整数的结识 (1)正数:大于0的数,像+12、+34、2等都是带“+”号的数叫正数。书写正数有时也可以省去“+”号。 (2)负数:小于0的数,(或一种量为正数,那么与它相反的数为负数)0既不是正数也不是负数。 (3)自然数:用来表达物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。0也是自然数,最小的自然数是0,没有最大的自然数。自然数的个数是无限的。 (4)整数 :正整数、0和负整数统称整数。正整数:除0以外的自然数叫做正整数。负整数:在除0以外的自然数的前面加上“—”号所得的数,叫做负整数。 (5)数位:在十进制计数法中,计数时数字所占的位置叫做数位。如:个位、十位、百位等。 (6)计数单位:每一个数位上的数都有相应的计数单位。如个位的计数单位是个,十分位的计数单位是十分之一等。 (7)位数:一个自然数具有数位的数量叫做位数,如12871是一个五位数(位数),它的最高位是万位(数位)。 数的读法 ①从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; ②中间有一个0或两个0只读一个“零”; ③末位不管有几个0都不读。 数的写法 ①从高位起,按照顺序写; ②几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。 (8)准确数:一个数与实际量完全相符,这样的数叫做准确数。近似数:与本来实际数十分接近的数叫做近似数。四舍五入法:求一个数的近似数时,看被省略的尾数最高位上的数是几,假如是4或者比4小,就把尾数舍去,假如是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。 (9)倍数:假如a能被b整除(a÷b=c),a就是b和c的倍数。约数:b和c就叫a的约数(或a的因数) 因数和倍数是互相依存的,不能单独存在。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它自身。一个数的倍数的个数是无限的,其中最小的倍数是他自身,没有最大的倍数。 (10)什么样的数能被2整除:个位上是0、2、4、6、8的数都能被2整除。 偶数:能被2整除的数叫偶数。 奇数:不能被2整除的数叫奇数。 (11)什么样的数能被5整除?个位上是0或5的数能被5整除。 (12)什么样的数能被3整除? 一个数的各位上的和能被3整除,这个数就能被3整除。 (13)质数(或素数):一个数假如只有1和它自身两个约数,这样的数叫质数。 (14)合数;一个数除了1和它自身尚有别的约数,这样的数叫合数。 (15)质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。 (16)分解质因数:把一个合数用质因数相乘的形式表达出来叫做分解质因数。 (17)公约数(公因数):几个数公有的约数叫公约数。最大公约数:其中最大的一个叫最大公约数(最大公因数)。 (18)互质数:公约数只有1的两个数叫互质数。 (19)公倍数:几个数公有的倍数叫这几个数的公倍数。是最小公倍数:其中最小的一个叫这几个数的最小公倍数。 (20)名数:通常量得的数和单位名称合起来的数叫名数。 (21)单名数:只带有一个单位名称的数叫单名数。 (22)复名数:有两个或两个以上单位名称的数叫复名数。 2、小数的结识 (1)小数:仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表达十分之几、百分之几、千分之几……的数叫小数。 (2)小数的基本性质:小数的末尾添上0或者去掉0,小数大小不变,这叫小数的基本性质。 (3)纯小数:整数部分是0的小数叫做纯小数,纯小数都小于1。如:0.23、0.422…… (4)带小数:整数部分不是0的小数叫做带小数,带小数都大于1。如:1.234、3.244…… (5)有限小数:小数部分的位数是有限的小数叫有限小数。 (6)无限小数:小数部分的位数是无限的小数叫无限小数。 (7)循环节:一个循环小数的部分依次不断反复出现的数叫做这个数的循环节。 (8)纯循环小数:循环节从小数第一位开始的叫纯循环小数。 (9)混循环小数:循环节不是从小数部分第一位开始的叫做混循环小数。 (10)小数点的移位:小数点向左移一位、两位、三位等,数缩小到本来的十分之一、百分之一、千分之一等;小数点向右移一位、两位、三位等,数扩大到本来的十倍、百倍、千倍等。 3、 分数的结识 (1)分数:把单位1平均提成若干份,表达这样的一份或者几份的数叫分数,在分数里中间的横线叫分数线,分数线下面的部分叫分母。 分数线上面的部分叫分子。 (2)分数单位 :把单位“1”平均提成若干份,表达其中的一份叫分数单位。 (3)真分数:分子比分母小的分数叫真分数。 (4)假分数:分子比分母大或者分子和分母相等的分数叫假分数。 (5)带分数:由整分数和真分数合成的数通常叫带分数。 (6)假分数转化为整数或带分数:用分子去除以分母,可以整除的,所得的商就是整数;不能整除的,所得的商是带分数的整数部分,余数是分数部分的分子,分母不变。如: =27÷5=5……2=5 (7)分数的基本性质 :分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。 (8)约分:把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。约分是通常都是化成最简分数。 最简分数 :分子、分母是互质数的分数叫最简分数。 (9)通分:把几个异分母分数化成与本来分数相等的同分母的分数的过程。 (10)怎么比较分数大小? ①分母相同的两个分数,分子大的分数比较大。 ②分子相同的两个分数,分母小的分子比较大。 分数加减法 1、同分母分数加减的法则 :同分母分数相加减,分母不变,只把分子相加减。 2、同分母带分数加减的法则 :带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。 3、异分母分数加减的法则 :异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。 分数乘法概念总结 1、分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。 例如:6×5的意义是:表达求5个6的和是多少。 2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。) 3、一个数与分数相乘,可以看作是求这个数的几分之几是多少。 例如:5×6的意义是:表达求5的6是多少。 4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。) 5、乘积是1的两个数互为倒数。 6、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。(1的倒数是1。0没有倒数。) 真分数的倒数大于1;假分数的倒数小于或等于1; 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。 7、一个数(0除外)乘以一个真分数,所得的积小于它自身。 8、 一个数(0除外)乘以一个假分数,所得的积大于或等于它自身。 9、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。例如:a× = b× = c× (a、b、c都不为0) 由于 < < ,所以b > a > c。 分数除法概念总结 1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 2.分数除法口诀:被除数不变,除号变乘号,除数变倒数 9.一个数(0除外)除以一个真分数,所得的商大于它自身。 10.一个数(0除外)除以一个假分数,所得的商小于或等于它自身。 解分数(百分数)应用题注意事项: 1.找单位“1”的方法:从具有分数的句子中找,“的”前“比”后的规则。 当句子中的单位“1”不明显时,把本来的量看做单位“1”。 2.分数(百分数)应用题三种基本类型 ①求比较量,用乘法 单位“1”×分率=比较量 ; ②求单位“1”,用除法 比较量÷分率=单位“1” ③求分率,用除法 比较量÷单位“1” =分率 3.注意比较量与分率的相应: ①多的比较量对多的分率; ②少的比较量对少的分率; ③增长的比较量对增长的分率; ④减少的比较量对减少的分率; ⑤提高的比较量对提高的分率; ⑥减少的比较量对减少的分率; ⑦工作总量的比较量对工作总量的分率; ⑧工作效率的比较量对工作效率的分率; ⑨部分的比较量对部分的分率; ⑩总量(和)的比较量对总量(和)的分率; 4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。 5.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。 3、百分数概念总结 1.百分数的定义:表达一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或比例。 2、百分数表达两个数之间的比率关系,不表达具体的数量,无单位名称。 3、百分数通常不写成分数形式,而在本来分子后面加上“%”来表达。分子部分可为小数、整数,可以大于100,小于100或等于100。 4、把小数化成百分数和把百分数化成小数的方法 :把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 5、把百分数化成小数:把百分号去掉,同时小数点向左移动两位。 6、把分数化成百分数和把百分数化成分数的方法 :把分数化成百分数,通常先把分数化成小数(除不尽通常保存三位小数),再把小数化成百分数; 7、把百分数化成小数:先把百分数改写成分母是100的分数,能约分的要约成最简分数。 8、常见百分率: 发芽率=发芽种子数÷种子总数×100% 出勤率=出勤人数÷应到人数×100% 产品的合格率=合格产品数÷产品总数×100% 9、应纳税额:缴纳的税款叫应纳税额。 税率:应纳税额与各种收入的比率叫做税率。 应纳税额=各种收入×税率 本金:存入银行的钱叫做本金。 10、利息:取款时银行多支付的钱叫做利息。 11、国家规定,存款的利息要按20%(现在是5%,应以题目为准)的税率纳税。国债的利息不纳税。 12、利率:利息与本金的比值叫做利率。(注意前、后项不要掉转) 13、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-20%) 14、国债利息的计算公式:利息=本金×利率×时间 13.本息:本金与利息的总和叫做本息。 4、数的运算 (1)加法:把两个数合并成一个数的运算叫加法。和:加数相加的结果叫和。 (2)减法:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。 (3)乘法:求几个相同加数的和的简便运算叫乘法。因数:相乘的两个数叫因数。积:因数相乘所得的数叫积。 (4)简便算法 ①加法互换律:两个数相加,互换加数的位置后,它的和不变,这叫做加法互换律。a+b=b+a ②加法结合律:a+b+c=a+(b+c) ③乘法互换律:两个因数相乘,互换因数的位置,它们的积不变,这叫乘法互换律。ab=ba ④乘法结合律:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。(ab)c=a(bc) 乘法分派律:(a+b)×c=ac+bc ⑤减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 除法的运算性质:①在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。②一个数连续除以几个数,等于这个数除以几个除数的积。例:90÷5÷6=90÷(5×6) ③一个数连续除以几个数,可以将几个除数互换位置。 a÷b÷c=a÷(b×c) a÷(b÷c)=a÷b×c (5)混合运算计算法则 ①在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; ②在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; ③算式里有括号的要先算括号里面的 (6)一位数乘多位数乘法法则 ①从个位起,用一位数依次乘多位数中的每一位数; ②哪一位上乘得的积满几十就向前进几。 (7)除数是一位数的除法法则 ①从被除数高位除起,每次用除数先试除被除数的前一位数,假如它比除数小再试除前两位数; ②除数除到哪一位,就把商写在那一位上面; ③每求出一位商,余下的数必须比除数小。 (8)一个因数是两位数的乘法法则 ①先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐; ②再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐; ③然后把两次乘得的数加起来。 (9)除法:已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。被除数:在除法中,已知的积叫被除数。除数:在除法中,已知的一个因数叫除数。商:在除法中,求出的未知因数叫商 (10)除数是两位数的除法法则 1、从被除数高位起,先用除数试除被除数前两位,假如它比除数小, 2、除到被除数的哪一位就在哪一位上面写商; 3、每求出一位商,余下的数必须比除数小。 (11)小数加减法计算法则 计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。 (12)小数乘法的计算法则 计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。 (13)除数是整数除法的法则 除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,假如除到被除数的末尾仍有余数,就在余数后面添0再继续除。 (14)除数是小数的除法运算法则 除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。 二、常见的量 长度单位: 1千米=1000米(1km=1000m) 1米=10分米(1m=10dm) 1分米=10厘米(1dm=10cm) 1厘米=10毫米(1cm=10mm) 面积单位: 1平方千米=100公顷 (1km²=100公顷) 1公顷=10000平方米 (1公顷=10000m²) 1平方千米=1000000平方米(1km²=1000000m²) 1平方米=100平方分米(1m²=100dm²) 1平方分米=100平方厘米(1dm²=100cm²) 1平方厘米=100平方毫米(1cm²=100mm²) 体积单位: 1立方米=1000立方分米(1m³=1000dm³) 1立方分米=1000立方厘米(1dm³=1000cm³) 1立方厘米=1000立方毫米(1cm³=1000mm³) 容积单位: 1升=1立方分米=1000毫升(1L=1dm³=1000mL) 1毫升=1立方厘米(1mL=1cm³) 质量单位: 1吨=1000公斤(1t=1000kg) 1公斤= 1000克(1kg=1000g) 人民币单位:1元=10角 1角=10分 1元=100分 时间单位: 1世纪=12023 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 三、式与方程 (1)等式:表达相等关系的式子叫等式。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。 等式性质2:等式两边乘同一个数或除以同一个不为0的数,左右两边仍然相等。 (2)代数: 代数就是用字母代替数。 (3)方程:具有未知数的等式叫方程。 (4)解方程:求方程解的过程叫解方程 (5)解答应用题环节 ①弄清题意,并找出已知条件和所求问题,分析题里的数量关系,拟定先算什么,再算什么,最后算什么; ②拟定每一步该如何算,列出算式,算出得数; ③进行检查,写出答案。 (6)列方程解应用题的一般环节 ①弄清题意,找出未知数,并用X表达; ②找出应用题中数量之间的相等关系,列方程; ③解方程; ④检查、写出答案。 四、比和比例 (1)比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项,比的前项除以后项所得的商叫比值。比值通常用分数、小数和整数表达。 (2)比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。 (3).比的后项不能为0。(分母不能为0,除数不能为0) (4)比同除法比较,比的前项相称于被除数,后项相称于除数,比值相称于商; (5)和分数比较,比的前项相称于分子,比的后项相称于分母,比值相称于分数的值。 (6)比与除法和分数的关系: 类别 各部分名称及联系 区别 比 前项 (比号) : 后项 比值 两个数的关系 除法 被除数 (除号)÷ 除数 商 一种运算 分数 分子 (分数线)— 分母 分数值 一个数 求比值 化简比 意义 前项除以后项的商 把比的前项和后项化成最简整数比 方法 前项÷后项 运用比的基本性质 结果 是一个数(可以是分数、小数或整数) 仍是一个比,也可以写成分数形式。 (3)比例:表达两个比相等的式子叫做比例。如3:6=9:18 (4)比例的基本性质:在比例里,两个外项的积等于两个内项的积。 (5)解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 (6)正比例:两种相关联的量,一种量变化,另一种量也随着化,假如这两种量中相相应的的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如: =k( k一定) (7)正比例关系中的两种量得变化规律:同时扩大,同时缩小,比值不变。 (8)反比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相相应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定) (10)反比例关系中的两种量得变化规律:一种量扩大是另一种量缩小,一种量缩小时则另一种量扩大,积不变。 (11)图上距离和实际距离的比,叫做这幅图的比例尺。图上距离:实际距离=比例尺 (12)图上距离÷实际距离=比例尺 图上距离÷比例尺=实际距离 实际距离×比例尺=图上距离 (13)①比例尺是一个比,表达相除关系,也表达图上距离和实际距离的倍比关系,所以比例尺没有单位。 ②图上距离是比的前项,实际距离是比的后项, ③在算比例尺时要注意把单位化成相同单位。 (14)比例尺的分类:1、根据比例尺的表现形式:①数值比例尺:1︰2023000 ②线段比例尺。 2、依据把实际距离缩小还是放大:①缩小比例尺,如1:10000 ,1厘米长的线段表达实际100m,也就是10000厘米。 ②放大比例尺:比例尺4:1(图上距离是实际距离的4倍,也就是把实际距离扩大了4倍)。 (15)像1:6000000、1:100、1:200、等用数字形式表达的比例尺叫数值比例尺 (16)像上面这种用注有数量的线段来表达和地面上相相应的实际距离的比例尺叫线段比例尺;它表达图上1厘米的距离相称于实际10米的距离。改写成数值比例尺为:1:1000。 五、图形 (一)、直线、射线、线段 直线:没有端点,两边无限延长,无法度量。 射线:有一个端点,一边可以无限延长,无法度量。 线段:有两个端点,可以度量。 互相垂直:两条直线相交成直角时,这两条线互相垂直。 垂线:其中一条直线叫做另一条直线的垂线. 垂足:这两条直线的交点叫做垂足。线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。 点到直线的距离:从直三角形内角和=180度。 平行线:同一平面内不相交的两条直线叫做平行线 (二)、角 1、角的意义:从一点引出两条射线所组成的图形叫做角。 2、顶点:围成角的端点叫顶点。 3、角的边:围成角的射线叫角的边。 4、角的大小取决于角两边叉开的大小,与边的长短无关。 5、角的分类 平角:角的两条边成一条直线,这样的角叫平角。 周角:一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°. 锐角:大于0度小于90度 直角:等于90度 周角:等于360度 钝角:大于90度小于180度 平角:等于180度 1周角=2平角=4直角 (三)、三角形 1. 三角形意义:由三条线段围成的图形叫做三角形。 三角形的边:围成三角形的每条线段叫三角形的边。 三角形的顶点:每两条线段的交点叫三角形的顶点。 三角形的高:从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高。 三角形的底:这个顶点的对边叫三角形的底。 三角形特性:三角形具有稳定性。 2. 三角形的内角和为180°;直角三角形的两锐角之和为90°。 3、三角形的分类: 按角分:①锐角三角形(三个角都是锐角)②直角三角形(有一个角是直角)③钝角三角形(有一个角是钝角) 按边分:①等边三角形(三条边相等,三个角都是60度,也叫正三角形)②等腰三角形(两条边相等)③不等边三角形(三条边都不相等) 4、等腰三角形 等腰三角形的腰:有等腰三角形里,相等的两个边叫做等腰三角形的腰。 等腰三角形的顶点:两腰的交点叫做等腰三角形的顶点。 等腰三角形的底:在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底 等腰三角形的底角:底边上两个相等的角叫等腰三角形的底角 (四)、四边形 1、四边形:有四条线段围成的图形叫四边形, 不具有稳定性。 2、平行四边形:两组对边分别平行的四边形叫做平行四边形。(或有两组对边分别相等的四边形)(或有一组对边平行且相等的四边形)。从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。 3、长方形:长方形是特殊的平行四边形,它的两组对边分别平行且相等,四个角都是直角。 4、正方形:正方形是特殊的长方形,它的四条边都相等,四个角都是直角。 5、梯形:只有一组对边平行的四边形叫做梯形。两腰相等的梯形叫做等腰梯形。有一个角是直角的梯形叫做直角梯形。 梯形的底:在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。 梯形的腰:在梯形里,不平等的一组对边叫梯形的腰。 梯形的高:从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高 6、四边形的四个内角和为360°。 7、正方形和长方形都是特殊的平行四边形,正方形是特殊的长方形。 (五)圆 1、圆中心的一点,这一点叫做圆心。圆心一般用字母O表达。 2.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表达。把圆规两脚分开,两脚之间的距离就是圆的半径。 3.圆心拟定圆的位置,半径拟定圆的大小。 4.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表达。 5.在同一个圆内,有无数条半径,所有的半径都相等,有无数条直径。所有的直径都相等。 7.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表达为:d=2r r = d÷2 8.圆的周长:围成圆的曲线的长度叫做圆的周长。 9.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母 表达。圆周率是一个无限不循环小数。在计算时,取 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。圆周率=π≈3.14 11.把一个圆切拼成一个近似的长方形,割拼成的长方形的长相称于圆周长的一半,宽相称于圆的半径,由于长方形的面积=长×宽,所以圆的面积=πr×r=πr²。 12.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 15.环形的周长=外圆周长+内圆周长 16.半圆的周长等于圆的周长的一半加直径。公式:C=πd÷2+d 或 C=πr+2r 注:半圆的周长不等于圆周长的一半。(圆周长的一半=πr) 圆的面积:圆的表面大小叫做圆的面积。公式:S=dπr 17.半圆面积=圆的面积÷2 公式为:S=πr² ÷ 2 18.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。 19.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,面积比是4:9。 20.当一个圆的半径增长a厘米时,它的周长就增长2πa厘米; 当一个圆的直径增长a厘米时,它的周长就增长πa厘米。 21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。 22.轴对称图形:假如一个图形沿着一条直线对折,两侧的图形可以完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 23.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 有2条对称轴的图形是:长方形 有3条对称轴的图形是:等边三角形 有4条对称轴的图形是:正方形 有无数条对称轴的图形是:圆、同心圆环。 注意:平行四边形不是轴对称图形 24.直径所在的直线是圆的对称轴。 25、什么是面积:物体的表面或围成的平面图形的大小叫做他们的面积。 立体图形 1、正方体特性:有6个面(都是全等的正方形),12条棱(长度都相等),8个顶点。棱:两个面相交的边叫棱。 2、长方体的特性:有6个面(都是长方形,有也许两个面是正方形,相对面的面积相等),12 条棱(相对的棱长相等),8个顶点。 (正方体是一种特殊的长方体。当长方体的长、宽、高都相等时,即为正方体。) 3、圆柱的特性:上下底是相等的两个圆,有无数条高,条条相等,侧面是曲面,展开是一个长方形,长等于圆柱底面的周长,宽等于圆柱的高。 4、圆锥的特性:1个底面、1个顶点、一个侧面、1条高。底面是一个圆,顶点到底面圆心的距离是高,侧面展开得到一个扇形。它的体积是等底等高的圆柱体积的 。 图形的运动 (1) 轴对称图形:一个图形沿着一条直线对折,两侧的图形能完全重合,这样的图形是轴对称图形,这条直线就是它的对称轴。 (2)平移:在平面内,将一个图形沿着直线方向移动一定的距离,这样的图形运动称为平移。 (3)旋转:在平面内,将一个图形绕某一点或轴进行不改变其大小和形状的圆周运动,这样的图形运动叫旋转。 (4)图形的放大的与缩小:按照一点的比将图形进行放大或缩小。 图形的位置 (1)方向:东、南、西、北为基本方向,在此基础上衍生出东北、东南、西北、西南四个方向。地图通常是按上北下南左西右东绘制的。 (2)数对:数对重要用来拟定平面上物体的位置。表达方法是:先写物体所在的列数,在写物体所在的行数,加上小括号,中间用逗号隔开,即(列,行) (3)路线图:把所通过的路线上的一系列地点按实际位置绘制成图,就是路线图。 六、记录图 (1)平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数,表达数据的总体水平,但无法表现个体之间的差异 (2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 ,表达数据的中档水平,但不能代表整体 。 (3)众数:在一组数据中出现次数最多的数叫做这组数据的众数。 表达数据的普遍情况, 但没有平均数准确。 (4)登记表:1、单式登记表。2、复式登记表 (5)用记录图表达有关数量之间的关系,比登记表更加形象具体,使人一目了然,印象深刻。 (6)常见的记录图有条形记录图、折线记录图和扇形记录图。 (7)条形记录图:是用一个单位长度表达一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。(作用:从条形记录图中很容易看出各种数量的多少) (8)折线记录图:是用一个单位长度表达一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。(作用:折线记录图不仅可以表达出数量的多少,并且可以清楚地表达出数量增减变化的情况。) (9)也许性:事件发生时拟定的用“一定”,不能拟定的用“也许”、“不也许”、“经常”、“偶尔”。 七、应用题 1、加法应用题(1)求总数:部分数+部分数=总数 (2)求比一个数多几的数:较小数+相差数=较大数 2、减法应用题(1)求剩余数:总数-部分数=剩余数 (2)求相差数:较大数-较小数=相差数 3、乘法应用题(1)求相同加数的和:每份数×份数=总数 (2)求一个数的几倍是多少:1倍数×倍数=几倍数 4、除法应用题(1)把一个数平均提成几份,求每份是多少:总数÷份数=每份数 (2)求一个数里包具有几个另一个数:总数÷每份数=份数 (3)求一个数是另一个数的几倍:几倍数÷1倍数=倍数 (4)求1倍数 5、分数、百分数应用题(1)已知甲数是乙数的几分之几(百分之几)(乙数是“1”)。关系式:比较量÷标准量=几分之几(百分之几) 方法:甲数÷乙数=甲数是乙数的几分之几(百分之几) (2)已知甲数,乙数是甲数的 (m≠0),求乙数:关系式:单位“1”的量×分率=所求量 方法:甲数× =乙数 (3)已知甲数的几分之几(百分之几)是乙数。 关系式:单位“1”的量×分率=已知量或分率的相应量÷分率=未知量。解题方法:求甲数:乙数÷分率=甲数或甲数×分率=乙数 (六)图形公式总结 1。正方形 正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长 公式:S=a×a 正方体的体积=边长×边长×边长 公式:V=a×a×a 2。正方形 长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽 公式:S=a×b 长方体的体积=长×宽×高 公式:V=a×b×h 3。三角形 三角形的面积=底×高÷2。 公式:S= a×h÷2 4。平行四边形 平行四边形的面积=底×高 公式:S= a×h 5。梯形 梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6。圆 直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径 公式:c=πd =2πr 圆的面积=半径×半径×π 公式:S=πrr 7。圆柱 圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的总体积=底面积×高。 公式:V=Sh 8。圆锥 圆锥的总体积=底面积×高÷3=底面积×高×1/3 公式:V=1/3Sh 圆柱和圆锥的关系:①等底等高: 圆柱的体积是圆锥体积的3倍;②等体积等高:圆柱的底面积是圆锥底面积的 。③等体积等底;圆柱的高是圆锥高的 。 数量关系式: 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、总份数×平均数=总数量 总数量÷总份数=平均数 总数量÷平均数=总份数 3、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、图上距离:实际距离=比例尺 比重×体积=重量 6、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 7、加数+加数=和 和-一个加数=另一个加数 8、被减数-减数=差 被减数-差=减数 差+减数=被减数 9、因数×因数=积 积÷一个因数=另一个因数 10、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 11、归一、归总问题: 单一量×份数=总数量 单一量=总数量÷份数 份数=总数量÷单一量 12、和差问题的公式 : (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题: 13、非封闭线路上的植树问题重要可分为以下三种情形: ⑴假如在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵假如在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶假如在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 14、- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年小升初 数学 定义 定理 公式
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文