中考复习专题-圆切线证明.doc
《中考复习专题-圆切线证明.doc》由会员分享,可在线阅读,更多相关《中考复习专题-圆切线证明.doc(38页珍藏版)》请在咨信网上搜索。
中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。 2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切. 二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点. 求证:AC与⊙D相切. 例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900. 求证:CD是⊙O的切线. [习题练习] 例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD. 例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点E,求证:△DEC为等腰三角形. 例3如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,求证:AC=CD. 例4如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,,BF和AD交于E, 求证:AE=BE. 例5如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E. (1)求证:AD=DC.(2)求证:DE是⊙O1的切线. 例6如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°. (1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由. 例7如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3. (1)若圆心O与C重合时,⊙O与AB有怎样的位置关系? (2)若点O沿CA移动,当OC等于多少时,⊙O与AB相切? 19.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.(1)判断0G与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若,求⊙O的面积。 12、如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD。 (1)求证:AD是⊙O的切线; (2)如果AB=2,AD=4,EG=2,求⊙O的半径。 13、如图,在△ABC中,∠ABC=900,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,求。 1如图,等腰三角形ABC中,AC=BC=10,AB=12。以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。 (1)求证:直线EF是⊙O的切线; (2)求CF:CE的值。 A B D C E F G O (第22题图) 2如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.⑴求证:DE是⊙O的切线;⑵若,求的值。 F E D C B A O 3如图,中,,以为直径作交边于点,是边的中点,连接. C E B A O F D (1)求证:直线是的切线; (2)连接交于点,若,求的值. 4.如图,点O在∠APB的平分线上,⊙O与PA相切于点C. (1) 求证:直线PB与⊙O相切; (2) PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长. 已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且. D C O A B E (1)判断直线与的位置关系,并证明你的结论; (2)若,,求的长. 解:(1) (2) 如图18,四边形内接于,是的直径,,垂足为,平分. (1)求证:是的切线; D E C B O A 图18 (2)若,求的长. (第24题) B D C E A O 如图所示,是直角三角形,,以为直径的交于点,点是边的中点,连结. (1)求证:与相切; (2)若的半径为,,求. 24、 如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E. (1)证明CF是⊙O的切线; (2)设⊙O的半径为1,且AC=CE,求MO的长. 【例1】如图,AC为⊙O的直径,B是⊙O外一点,AB交⊙O于E点,过E点作⊙O的切线,交BC于D点,DE=DC,作EF⊥AC于F点,交AD于M点。 (1)求证:BC是⊙O的切线; (2)EM=FM。 证明: 【例2】如图,△ABC中,AB=AC,O是BC的中点,以O为圆心的圆与AB相切于点D。求证:AC是⊙O的切线。 【例3】如图,已知AB是⊙O的直径,BC为⊙O的切线,切点为B,OC平行于弦AD,OA=。 (1)求证:CD是⊙O的切线; (2)求的值; (3)若AD+OC=,求CD的长。 探索与创新: 【问题一】如图,以正方形ABCD的边AB为直径,在正方形内部作半圆,圆心为O,CG切半圆于E,交AD于F,交BA的延长线于G,GA=8。 (1)求∠G的余弦值; (2)求AE的长。 【问题二】如图,已知△ABC中,AC=BC,∠CAB=(定值),⊙O的圆心O在AB上,并分别与AC、BC相切于点P、Q。 (1)求∠POQ; (2)设D是CA延长线上的一个动点,DE与⊙O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由。 圆的切线证明及线段长求解在在中考中的常见题型 1、已知:如图,在矩形中,点在对角线上,以的长为半径的⊙与,分别交于点E、点F,且∠=∠. (1)判断直线与⊙的位置关系,并证明你的结论; (2)若,,求⊙的半径. 2、已知:如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE于点F. (1)求证:CD为⊙O的切线; (2)若BC=5,AB=8,求OF的长. A B F C D E O 第3题图 3、如图,是等腰三角形,,以为 直径的⊙与交于点,,垂足为, 的延长线与的延长线交于点. (1)求证:是⊙的切线; (2)若⊙的半径为,,求的值. 4、已知:如图,是的直径,切于,交于,为边的中点,连结. (1) 是的切线; (2) 若, 的半径为5, 求的长. O B G E C M A F 5、如图,在中,,是角平分线, 平分交于点,经过两点的交于 点,交于点,恰为的直径. (1)求证:与相切; (2)当时,求的半径. 6、如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且 (1)证明CF是的切线 (2) 设⊙O的半径为1.且AC=CE,求MO的长. 7、如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作 DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形. 8、在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上. (1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论. (2)若OB=BD=2,求CE的长. 9、已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E, (9题图) 联结EB交OD于点F. (1)求证:OD⊥BE; (2)若DE=,AB=5,求AE的长. 10、如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB. (1)判断直线BD和⊙O的位置关系,并给出证明; (2) 当AB=10,BC=8时,求BD的长. 11、已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C. (1)求证:AD=DC; (2)过D作⊙O的切线交BC于E,若DE=2,CE=1, 求⊙O的半径. 12、如图,为⊙的直径,平分交⊙于点, 的延长线于点,交的延长 线于点, (1)求证:是⊙的切线; (2)若⊙的半径为5,求的长. 13、如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E. (1)求证:直线EF是⊙O的切线; (2)求sin∠E的值. 14、如图,为半圆的直径,点C在半圆上,过点作的平行线交于点,交过点的直线于点,且. (1)求证:是半圆O的切线; (2)若,,求的长. 15、已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点, 交BD于点G,交AB于点F. (1)求证:AC与⊙O相切; (2)当BD=2,sinC=时,求⊙O的半径. 16、如图,AB是⊙O的直径,点C在⊙O上,M是 的中点,OM交⊙O的 切线BP于点P. (1)判断直线PC和⊙O的位置关系, 并证明你的结论. (2)若sin∠BAC=0.8,⊙O的半径为2, 求线段PC的长. 17、如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD是否为⊙O的切线,并说明理由; O B C D E A (2)若CD = ,求BC的长. 18、已知,如图,直线MN交⊙O于A,B两点,AC是直径, AD平分CAM交⊙O于D,过D作DE⊥MN于E. (1)求证:DE是⊙O的切线; (2)若cm,cm,求⊙O的半径. 19、已知:如图,为⊙的直径,弦,切⊙于,联结. (1)判断是否为⊙的切线,若是请证明;若不是请说明理由. (2)若,,求⊙的半径. 20、如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F. (1)求证:EF是⊙O的切线; (2)求DE的长. 21、已知:在⊙O中,AB是直径,AC是弦,OE⊥AC 于点E,过点C作直线FC,使∠FCA=∠AOE,交 AB的延长线于点D. (1)求证:FD是⊙O的切线; (2)设OC与BE相交于点G,若OG=2,求⊙O 半径的长; (3)在(2)的条件下,当OE=3时,求图中阴影 部分的面积. 22、已知:如图,点是⊙上一点,半径的延长线与过点的直线交于点,,. (1)求证:是⊙的切线; (2)若,,求弦的长. 23、如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO. (1)求证:BD是⊙O的切线; (2)若点E是劣弧BC上一点,弦AE与BC相交 于点F,且CF=9,cos∠BFA=,求EF的长. 24、如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为3,AB=4,求AD的长. 25、已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C. (1)判断直线CE与⊙O的位置关系,并证明你的结论; (2)若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 26、已知:如图,在△ABC中,AB = AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E. (1)求证:AD是圆O的切线; A B C D P E . O (第26题) (2)若PC是圆O的切线,BC = 8,求DE的长. 27、已知:如图,在△ABC中,,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O. (1)求证:AC是⊙O的切线; (2)设⊙O交BC于点F,连结EF,若BC=9, CA=12. 求的值. (第28题) 28、在Rt△ABC中,∠C=90, BC=9, CA=12,∠ABC的平分线BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆,交BC于点F (1)求证:AC是⊙O的切线; (2)联结EF,求的值 14、如图,AB是半圆(圆心为O)的直径,OD是半径,BM切半圆于B,OC与弦AD平行且交BM于C。 (1)求证:CD是半圆的切线; (2)若AB长为4,点D在半圆上运动,设AD长为,点A到直线CD的距离为,试求出与之间的函数关系式,并写出自变量的取值范围。 15、如图,AB是⊙O的直径,点C在⊙O的半径AO上运动, PC⊥AB交⊙O于E,PT切⊙O于T,PC=2.5。 (1)当CE正好是⊙O的半径时,PT=2,求⊙O的半径; (2)设,,求出与之间的函数关系式; (3)△PTC能不能变为以PC为斜边的等腰直角三角形?若能,请求出△PTC的面积;若不能,请说明理由。 11 20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C. (1)求证:AD=DC; (2)过D作⊙O的切线交BC于E,若DE=2,CE=1, 求⊙O的半径. 20.在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上. (1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论. (2)若OB=BD=2,求CE的长. ) 20.如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB. (1)判断直线BD和⊙O的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD的长. (20题图) 20.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E, 联结EB交OD于点F. (1)求证:OD⊥BE; (2)若DE=,AB=5,求AE的长. 20. 如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且 (1)证明CF是的切线 (2) 设⊙O的半径为1.且AC=CE,求MO的长. 20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C. (1)求证:AD=DC; (2)过D作⊙O的切线交BC于E,若DE=2,CE=1, 求⊙O的半径. 20.在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上. (1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论. (2)若OB=BD=2,求CE的长. 20.如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB. (1)判断直线BD和⊙O的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD的长. (20题图) 20.(本小题满分5分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E, 联结EB交OD于点F. (1)求证:OD⊥BE; (2)若DE=,AB=5,求AE的长. 20. 如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且 (1)证明CF是的切线 (2) 设⊙O的半径为1.且AC=CE,求MO的长. 1.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F。 (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5, 求BF的长。 2.如图,已知△ABC内接于⊙O,AC是直径, D是弧AB的中点,过点D作直线BC的垂线,分别交 CB、CA的延长线于E、F. (1)求证:EF是⊙O的切线. (2)若EF=8,EC=6,求⊙O的半径. 3.已知是⊙O的直径,是⊙O的切线,A是切点,BP与⊙0交于点C.(Ⅰ)如图①,若AB=2,,求的长(结果保留根号); (Ⅱ)如图②,若D为AP的中点,求证直线CD是⊙O的切线. A B C O P 图① A B C O P D 图② 4.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°. (1)求证:DE是⊙O的切线; (2)分别求AB,OE的长; O B A C E M D 1.如图,以线段AB为直径的⊙O交线段AC于点E,点M是弧AE的中点,OM交AC于点D, ∠BOE=60°,,. (1)求的度数; (2)求证:BC是⊙O的切线; (3)求MD的长度. 2.如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E. (1)求证:; (2)若tanC=,DE=2,求AD的长. . 3.如图,⊙O的直径AB=12,弧BC的长为2,D在OC的延长线上,且CD=OC. (1)求∠A的度数; (2)求证:DB是⊙O的切线. 4. 如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于G,连结DF. (1)求证:AB为⊙O的切线; (2)若⊙O的半径为5,sin∠DFE=,求EF的长. 1.如图,AB为⊙O的直径,劣弧,BD∥CE,连接AE并延长交BD于D。 求证:(1)BD是⊙O的切线 欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。 7、压力不是有人比你努力,而是那些比你牛×几倍的人依然比你努力。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 专题 切线 证明
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文