2014椭圆素材1.doc
《2014椭圆素材1.doc》由会员分享,可在线阅读,更多相关《2014椭圆素材1.doc(14页珍藏版)》请在咨信网上搜索。
2013理 5、【2013全国大纲理8】椭圆的左、右顶点分别为点P在C上且直线斜率的取值范围是那么直线斜率的取值范围是() A. B. C. D. 答案:B 8、【2013新课标Ⅰ理10】已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点。若AB的中点坐标为(1,-1),则E的方程为 ( ) A、+=1 B、+=1 C、+=1 D、+=1 答案:D 【解析】设,则=2,=-2, ① ② ①-②得, ∴===,又==,∴=,又9==,解得=9,=18,∴椭圆方程为,故选D. 9、【2013重庆理7】已知圆,圆,分别是圆上的动点,为轴上的动点,则的最小值为( ) A、 B、 C、 D、 【答案】:A 11、【2013湖南理14】设是双曲线的两个焦点,P是C上一点,若且的最小内角为,则C的离心率为 【答案】 【解析】 设P点在右支上, 12、【2013江苏9】抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部和边界).若点是区域内的任意一点,则的取值范围是 . 【答案】 解析:易知切线方程为: 所以与两坐标轴围成的三角形区域三个点为 易知过C点时有最小值,过B点时有最大值0.5 13、【2013福建理14】椭圆的左.右焦点分别为,焦距为2c,若直线与椭圆的一个交点M满足,则该椭圆的离心率等于 【答案】 【解析】由直线方程直线与x轴的夹角,且过点即由椭圆的第一定义可得 2012文 1、【2012山东文11】已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为( ) A. B . C. D. 答案:D 【解析】抛物线的焦点 ,双曲线的渐近线为,不妨取,即,焦点到渐近线的距离为,即,所以双曲线的离心率为,所以,所以,所以抛物线方程为,选D. 2、【2012全国大纲理8文10】已知、为双曲线的左、右焦点,点在上,,则 A. B. C. D. 【答案】C 【解析】双曲线的方程为,所以,因为|PF1|=|2PF2|,所以点P在双曲线的右支上,则有|PF1|-|PF2|=2a=,所以解得|PF2|=,|PF1|=,所以根据余弦定理得,选C. 3、【2012四川文9】已知抛物线关于轴对称,它的顶点在坐标原点, 并且经过点。若点到该抛物线焦点的距离为,则( ) A、 B、 C、 D、 [答案]B [解析]设抛物线方程为y2=2px(p>0),则焦点坐标为(),准线方程为x=, 4、【2012湖南文6】已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为 A.-=1 B.-=1 C.-=1 D.-=1 【答案】A 【解析】设双曲线C :-=1的半焦距为,则. 又C 的渐近线为,点P (2,1)在C 的渐近线上,,即. 又,,C的方程为-=1. 5、【2012四川文15】椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是______。 [答案] [解析]根据椭圆定义知:4a=12, 得a=3 , 又 7、【2012安徽文14】过抛物线的焦点的直线交该抛物线于两点,若,则= [答案] 【解析】 设及;则点到准线的距离为得: 又 8、【2012天津文11】已知双曲线与双曲线有相同的渐近线,且的右焦点为,则 【答案】1,2 【解析】双曲线的渐近线为,而的渐近线为,所以有,,又双曲线的右焦点为,所以,又,即,所以。 2012理 1、【2012新课标理8】(8)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) A. B. C. D. 【答案】C 【解析】设等轴双曲线方程为,抛物线的准线为,由,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以,所以实轴长,选C. 2、【2012山东理10】已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为 A. B. C. D. 【答案】D 【解析】因为椭圆的离心率为,所以,,,所以,即,双曲线的渐近线为,代入椭圆得,即,所以,,,则第一象限的交点坐标为,所以四边形的面积为,所以,所以椭圆方程为,选D. 2011年 1、【2011福建理7】设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 A. B.或2 C.2 D. 答案:A 解析:当曲线为椭圆时; 当曲线为双曲线时, 2、【2011浙江理17】设分别为椭圆的焦点,点在椭圆上,若;则点的坐标是 . 【答案】 【解析】设直线的反向延长线与椭圆交于点,又∵,由椭圆的对称性可得,设,, 又∵,, ∴解之得,∴点A的坐标为. 3、【2011江西理14】若椭圆的焦点在x轴上,过点作圆的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 答案: 解析:设过点(1,)的直线方程为:当斜率存在时,, 根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=,直线与圆方程的联立可以得到切点的坐标(),当斜率不存在时,直线方程为:x=1,根据两点A:(1,0),B:()可以得到直线:2x+y-2=0,则与y轴的交点即为上顶点坐标(2,0),与x轴的交点即为焦点,根据公式,即椭圆方程为: 4、【2011北京理14】曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数 a2 (a >1)的点的轨迹.给出下列三个结论: ① 曲线C过坐标原点; ② 曲线C关于坐标原点对称; ③若点P在曲线C上,则△FPF的面积大于a。 其中,所有正确结论的序号是 。 【答案】②③ 【解析】:①曲线经过原点,这点不难验证是错误的,如果经过原点,即么,与条件不符;②曲线关于原点对称,这点显然正确,如果在某点处关于原点的对称点处也一定符合 ③三角形的面积= 5、【2011大纲理15】已知、分别为双曲线: 的左、右焦点,点,点的坐标为(2,0),为的平分线.则 【答案】6 【解析】为的平分线,∴ ∴ 又点,由双曲线的第一定义得. 7、作业手册理P41-5 以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是( ) A.(0,2) B.(2,0) C.(4,0) D.(0,4) 答案:B [解析] x+2=0为抛物线的准线,根据抛物线的定义,圆心到准线的距离等于圆心到焦点的距离,故这些圆恒过定点(2,0). 8、作业手册理P41-11已知F1,F2是椭圆+=1(a>b>0)的左、右焦点,且离心率e=,点P为椭圆上的一个动点,△PF1F2的内切圆面积的最大值为. (1)求椭圆的方程; (2)若A,B,C,D是椭圆上不重合的四个点,满足向量与共线,与共线,且·=0,求||+||的取值范围. 解:(1)由几何性质可知当△PF1F2内切圆面积取最大值时, S△PF1F2取最大值,且(S△PF1F2)max=·2c·b=bc. 由πr2=π得r=, 又C△PF1F2=2a+2c为定值,S△PF1F2=C△PF1F2, 综上得=, 又由e==,可得a=2c,即b=c, 经计算得c=2,b=2 ,a=4, 故所求椭圆方程为+=1. (2)由题意知AC,BD均过F1点,且AC⊥BD.①当直线AC与BD中有一条直线垂直于x轴时,||+||=6+8=14. ②当直线AC斜率存在但不为0时,设A(x1,y1),C(x2,y2),B(x3,y3),D(x4,y4),直线AC的方程为y=k(x+2),由消去y,得(3+4k2)x2+16k2x+16k2-48=0,则有x1+x2=,x1x2=, 代入弦长公式得||=. 同理由消去y,得x2+x+-48=0, 则有x3+x4=,x3x4=. 代入弦长公式得||=. 所以||+||==. 令=t∈(0,1),则-t2+t+12∈,所以||+||∈, 由①②可知,||+||的取值范围是. 9、作业手册理P37-7????? 10、作业手册文P37-11????? 11、作业手册文P37-9?????- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 椭圆 素材
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文