圆锥曲线解题技巧和方法综合全.doc
《圆锥曲线解题技巧和方法综合全.doc》由会员分享,可在线阅读,更多相关《圆锥曲线解题技巧和方法综合全.doc(30页珍藏版)》请在咨信网上搜索。
1、圆锥曲线的解题技巧一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。如:(1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。 (2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有(3)y2=2px(p0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p. 典型例题 给定双曲线。过A(2,1)的直线与双曲线交于两点 及,求线段的中点P的轨迹方程。(2)焦点三角形问题 椭圆或双曲线上
2、一点P,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆上任一点,为焦点,。 (1)求证离心率; (2)求的最值。(3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A、B,且OAOB,求p关于t的函数f(t)的表达式。(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范
3、围)问题,常用代数法和几何法解决。 若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。最值问题的处理思路: 1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为
4、直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。典型例题已知抛物线y2=2px(p0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求NAB面积的最大值。(5)求曲线的方程问题1曲线的形状已知-这类问题一般可用待定系数法解决。典型例题已知直线L过原点,抛物线C 的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。2曲线的形状未知-求轨迹方程典型例题MNQO已知直角坐标平
5、面上点Q(2,0)和圆C:x2+y2=1, 动点M到圆C的切线长与|MQ|的比等于常数(0),求动点M的轨迹方程,并说明它是什么曲线。(6) 存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C的方程,试确定m的取值范围,使得对于直线,椭圆C上有不同两点关于直线对称(7)两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用来处理或用向量的坐标运算来处理。典型例题 已知直线的斜率为,且过点,抛物线,直线与抛物线C有两个不同的交点(如图)。 (1
6、)求的取值范围;(2)直线的倾斜角为何值时,A、B与抛物线C的焦点连线互相垂直。四、解题的技巧方面: 在教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明:(1)充分利用几何图形 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。 典型例题 设直线与圆相交于P、Q两点,O为坐标原点,若,求的值。(2) 充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理
7、求解,这种方法在有关斜率、中点等问题中常常用到。典型例题 已知中心在原点O,焦点在轴上的椭圆与直线相交于P、Q两点,且,求此椭圆方程。(3) 充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。典型例题 求经过两已知圆和0的交点,且圆心在直线:上的圆的方程。(4)充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题这也是我们常说的三角代换法。典型例题 P为椭圆上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。(5)线段长的几种简便计算方法 充分利用现成结果,减少运算过程 一般地,求直
8、线与圆锥曲线相交的弦AB长的方法是:把直线方程代入圆锥曲线方程中,得到型如的方程,方程的两根设为,判别式为,则,若直接用结论,能减少配方、开方等运算过程。例 求直线被椭圆所截得的线段AB的长。 结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。例 、是椭圆的两个焦点,AB是经过的弦,若,求值 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例 点A(3,2)为定点,点F是抛物线的焦点,点P在抛物线上移动,若取得最小值,求点P的坐标。圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1)直线方程的
9、形式有五件:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重要内容倾斜角与斜率点到直线的距离 夹角公式:(3)弦长公式直线上两点间的距离: 或(4)两条直线的位置关系=-1 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式) 标准方程: 距离式方程: 参数方程:(2)、双曲线的方程的形式有两种 标准方程: 距离式方程:(3)、三种圆锥曲线的通径你记得吗? (4)、圆锥曲线的定义你记清楚了吗?如:已知是椭圆的两个焦点,平面内一个动点M满足则动点M的轨迹是( )A、双曲线;B、双曲线的一支;C、两条射线;D、一条射线(5)、焦点三角形面积公式: (其中)(6)、记住焦半
10、径公式:(1),可简记为“左加右减,上加下减”。 (2) (3)(6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题)设、,为椭圆的弦中点则有,;两式相减得=2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式,以及根与系数的关系,代入弦长公式,设曲线上的两点,将这两点代入曲线方程得到两个式子,然后-,整体消元,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。若有向量的关系,则寻找坐标
11、之间的关系,根与系数的关系结合消元处理。一旦设直线为,就意味着k存在。例1、已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;(2)若角A为,AD垂直BC于D,试求点D的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC的斜率,从而写出直线BC的方程。第二问抓住角A为可得出ABAC,从而得,然后利用联立消元法及交轨法求出点D的轨迹方程;解:(1)设B(,),C(,),BC中点为(),F(2,0)则有两式作差有 (1)F(2,0)为三角形重心,所以由,得,由得,代入(1)
12、得直线BC的方程为2)由ABAC得 (2)设直线BC方程为,得, 代入(2)式得,解得或直线过定点(0,设D(x,y),则,即所以所求点D的轨迹方程是。4、设而不求法例2、如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点当时,求双曲线离心率的取值范围。分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。建立直角坐标系,如图,若设C,代入,求得,进而求得再代入,建立目标函数,整理,此运算量可见是难上加难.我们对可采取设而不求的解题策略,建立目标函数,整理,化繁为简. 解法一:如图,以AB为垂
13、直平分线为轴,直线AB为轴,建立直角坐标系,则CD轴因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于轴对称 依题意,记A,C,E,其中为双曲线的半焦距,是梯形的高,由定比分点坐标公式得 , 设双曲线的方程为,则离心率由点C、E在双曲线上,将点C、E的坐标和代入双曲线方程得 , 由式得 , 将式代入式,整理得 ,故 由题设得,解得 所以双曲线的离心率的取值范围为 分析:考虑为焦半径,可用焦半径公式, 用的横坐标表示,回避的计算, 达到设而不求的解题策略 解法二:建系同解法一,又,代入整理,由题设得,解得 所以双曲线的离心率的取值范围为 5、判别式法例3已知双曲线,直线过点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 解题 技巧 方法 综合
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。