圆锥曲线知识点整理.doc
《圆锥曲线知识点整理.doc》由会员分享,可在线阅读,更多相关《圆锥曲线知识点整理.doc(10页珍藏版)》请在咨信网上搜索。
1、高二数学圆锥曲线知识整理知识整理解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。1、 三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是
2、这样的点集:,其中F为定点,d为P到定直线的l距离,Fl,如图。因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。当0e1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:P|PF1|+|PF2|=2a,2a|F1F2|0,F1、F2为定点,双曲线P|PF1|-|PF2|=2a,|F1F2|2a0,F1,F2为定点。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴
3、对称,关于中心成中心对称。 定量:椭 圆双 曲 线抛 物 线焦 距2c长轴长2a实轴长2a短轴长2b(双曲线为虚轴)焦点到对应准线距离P=2p通径长22p离心率1基本量关系a2=b2+c2C2=a2+b2 (4)圆锥曲线的标准方程及解析量(随坐标改变而变)举焦点在x轴上的方程如下:椭 圆双 曲 线抛 物 线标准方程(ab0)(a0,b0)y2=2px(p0)顶 点(a,0) (0,b)(a,0)(0,0)焦 点(c,0)(,0)准 线X=x=中 心(0,0)有界性|x|a|y|b|x|ax0焦半径P(x0,y0)为圆锥曲线上一点,F1、F2分别为左、右焦点 |PF1|=a+ex0 |PF2|=
4、a-ex0P在右支时: |PF1|=a+ex0 |PF2|=-a+ex0P在左支时: |PF1|=-a-ex0 |PF2|=a-ex0|PF|=x0+总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。2、 直线和圆锥曲线位置关系(1) 位置关系判断:法(适用对象是二次方程,二次项系数不为0)。其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后
5、一种情形下,消元后关于x或y方程的二次项系数为0。(2) 直线和圆锥曲线相交时,交点坐标就是方程组的解。 当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。 4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。例题研究例1、 根据下列条件,求双曲线方程。(1) 与双曲线有共同渐近线,且过点(-3,);(2) 与双曲线有公共焦点,且过点(,2)。分析:法一:(1)双曲线的渐近线为令x=-3,y=4,因,故点(-3,)在射线(x0)及x轴负半轴之间, 双曲线焦点在x轴上设双曲线方程为,(a0,b0) 解之得: 双
6、曲线方程为 (2)设双曲线方程为(a0,b0)则 解之得: 双曲线方程为法二:(1)设双曲线方程为(0) 双曲线方程为(3) 设双曲线方程为 解之得:k=4 双曲线方程为评注:与双曲线共渐近线的双曲线方程为(0),当0时,焦点在x轴上;当0,b2-k0)。比较上述两种解法可知,引入适当的参数可以提高解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基本思想。例2、设F1、F2为椭圆的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|PF2|,求的值。解题思路分析:当题设涉及到焦半径这个信息时,通常联想到椭圆的两个定义。法一:当PF2F1=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 知识点 整理
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。