求极限的几种方法.doc
《求极限的几种方法.doc》由会员分享,可在线阅读,更多相关《求极限的几种方法.doc(19页珍藏版)》请在咨信网上搜索。
. 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 证: 由 取 则当 时,就有 由函数极限定义有: 2、利用极限的四则运算性质 若 (I) (II) (III)若 B≠0 则: (IV) (c为常数) 上述性质对于 例:求 解: = 3、约去零因式(此法适用于 例: 求 解:原式= = == = 4、通分法(适用于型) 例: 求 解: 原式= = = 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足: (I) (II) (M为正整数) 则: 例: 求 解: 由 而 故 原式 = 6、利用无穷小量与无穷大量的关系。 (I)若: 则 (II) 若: 且 f(x)≠0 则 例: 求下列极限 ① ② 解: 由 故 由 故 = 7、等价无穷小代换法 设 都是同一极限过程中的无穷小量,且有: , 存在, 则 也存在,且有= 例:求极限 解: = 注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数” 8、利用两个重要的极限。 但我们经常使用的是它们的变形: 例:求下列函数极限 9、利用函数的连续性(适用于求函数在连续点处的极限)。 例:求下列函数的极限 (2) 10、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有: m、n、k、l 为正整数。 例:求下列函数极限 ① 、n ② 解: ①令 t= 则当 时 ,于是 原式= ②由于= 令: 则 == = 11、 利用函数极限的存在性定理 定理: 设在的某空心邻域内恒有 g(x)≤f(x)≤h(x) 且有: 则极限 存在, 且有 例: 求 (a>1,n>0) 解: 当 x≥1 时,存在唯一的正整数k,使 k ≤x≤k+1 于是当 n>0 时有: 及 又 当x时,k 有 及 =0 12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。 定理:函数极限存在且等于A的充分必要条件是左极限及右极限都存在且都等于A。即有: ==A 例:设= 求及 由 13、罗比塔法则(适用于未定式极限) 定理:若 此定理是对型而言,对于函数极限的其它类型,均有类似的法则。 注:运用罗比塔法则求极限应注意以下几点: 1、 要注意条件,也就是说,在没有化为时不可求导。 2、 应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。 3、 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。 4、当 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。 例: 求下列函数的极限 ① ② 解:①令f(x)= , g(x)= l , 由于 但 从而运用罗比塔法则两次后得到 ② 由 故此例属于型,由罗比塔法则有: 14、利用泰勒公式 对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式: 1、 2、 3、 4、 5、 6、 上述展开式中的符号都有: 例:求 解:利用泰勒公式,当 有 于是 = = = 15、利用拉格朗日中值定理 定理:若函数f满足如下条件: (I) f 在闭区间上连续 (II)f 在(a ,b)内可导 则在(a ,b)内至少存在一点,使得 此式变形可为: 例: 求 解:令 对它应用中值定理得 即: 连续 从而有: 16、求代数函数的极限方法 (1)有理式的情况,即若: (I)当时,有 (II)当 时有: ①若 则 ②若 而 则 ③若,,则分别考虑若为的s重根,即: 也为的r重根,即: 可得结论如下: 例:求下列函数的极限 ① ② 解: ①分子,分母的最高次方相同,故 = ② 必含有(x-1)之因子,即有1的重根 故有: (2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。 例:求 解: 二、多种方法的综合运用 上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计算大为简化。 例:求 [解法一]: = 注:此法采用罗比塔法则配合使用两个重要极限法。 [解法二]: = 注:此解法利用“三角和差化积法”配合使用两个重要极限法。 [解法三]: 注:此解法利用了两个重要极限法配合使用无穷小代换法以及罗比塔法则 [解法四]: 注:此解法利用了无穷小代换法配合使用两个重要极限的方法。 [解法五]: 注:此解法利用“三角和差化积法”配合使用无穷小代换法。 [解法六]: 令 注:此解法利用变量代换法配合使用罗比塔法则。 [解法七]: 注:此解法利用了罗比塔法则配合使用两个重要极限。 1.利用极限定义求极限 (3)利用有界量与无穷小乘积的极限为零 3、利用两个重要极限 利用两个重要极限时,要注意成立的条件。 4、利用等价无穷小代换 利用等价无穷小代换能使得求极限过程简化,在乘积因子中可以用与其等价的无穷小量来替换。但是在两个无穷小量相减时,如果分别用它们的等价无穷小量代换要注意条件。 19 / 19- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 方法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文