二次根式复习专题讲义补课用.doc
《二次根式复习专题讲义补课用.doc》由会员分享,可在线阅读,更多相关《二次根式复习专题讲义补课用.doc(27页珍藏版)》请在咨信网上搜索。
二次根式复习专题讲义 一、 二次根式的概念: 1.二次根式:形如(a≥0)的式子叫做二次根式,“”称为二次根号。 ①.式子中,被开方数(式)必须大于等于零。 ②. (a≥0)是一个非负数。 ③. ()2=a(a≥0);=a(a≥0) 2. 二次根式的乘: ①.一般的,有·=.(a≥0,b≥0) ②. 反过来,有=× ( a ≥ 0 ,b ≥ 0 ) 3.二次根式的除: ①. 一般地,对二次根式的除法规定: =(a≥0,b>0), ②. 反过来,=(a≥0,b>0) 4. 二次根式的加减法则: 二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。 典型例题分析: 例1. 下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0。 解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、。 例2.当x是多少时,+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0. 解:依题意,得 由①得:x≥- 由②得:x≠-1 当x≥-且x≠-1时,+在实数范围内有意义。 变式题1:当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x≥ 当x≥时,在实数范围内有意义. 变式题2:①.当x是多少时,+x2在实数范围内有意义? 解:依题意得:, ∴当x>-且x≠0时,+x2在实数范围内没有意义。 ②.若+有意义,则=_______。 ③.使式子有意义的未知数x有( )个。 例3. ①.已知y=++5,求的值.(答案: ) ②.若+=0,求a2004+b2004的值.(答案: 2) ③.已知+=0,求xy的值.(答案:81) 例4. 计算 1.()2 2.(3)2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题. 解:()2 =,(3)2 =32·()2=32·5=45, ()2=,()2=. 例5. 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)2≥0; (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0. 所以上面的4题都可以运用()2=a(a≥0)的重要结论解题. 解:(1)因为x≥0,所以x+1>0 ()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1 (4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 变式题:计算 1.(-3)2 2. 例6.在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 例7.化简 (1) (2) (3) (4) 分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52, (4)(-3)2=32,所以都可运用=a(a≥0)去化简。 解:(1)==3 (2)==4 (3)==5 (4)==3 例8.填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题. (1)若=a,则a可以是什么数? (2)若=-a,则a可以是什么数? (3)>a,则a可以是什么数? 分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0. (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0. 解:(1)因为=a,所以a≥0; (2)因为=-a,所以a≤0; (3)因为当a≥0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0 例9.当x>2,化简-. 例10.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1; 乙的解答为:原式=a+=a+(a-1)=2a-1=17. 两种解答中,_______的解答是错误的,错误的原因是__________. 变式题1.若│1995-a│+=a,求a-19952的值. (提示:先由a-2000≥0,判断1995-a的值是正数还是负数,去掉绝对值) 变式题2. 若-3≤x≤2时,试化简│x-2│++。 (答案:10-x) 例11.计算 (1)× (2)× (3)× (4)× 分析:直接利用·=(a≥0,b≥0)计算即可. 解:(1)×= (2)×== (3)×==9 (4)×== 例12 . 化简 (1) (2) (3) (4) (5) 分析:利用=·(a≥0,b≥0)直接化简即可. 解:(1)=×=3×4=12 (2)=×=4×9=36 (3)=×=9×10=90 (4)=×=××=3xy (5)==×=3 例13 . 判断下列各式是否正确,不正确的请予以改正: (1) (2)×=4××=4×=4=8 解:(1)不正确. 改正:==×=2×3=6 (2)不正确. 改正:×=×====4 变式题1:若直角三角形两条直角边的边长分别为cm和cm,那么此直角三角形斜边长是( ). 变式题2:化简a的结果是( ). 变式题3:=_______.√169×6 变式题4:一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米? 设:底面正方形铁桶的底面边长为x, 则x2×10=30×30×20,x2=30×30×2, x=×=30. 变式题5:探究过程:观察下列各式及其验证过程. (1)2= 验证:2=×== == (2)3= 验证:3=×== == 同理可得:4 5,…… 通过上述探究你能猜测出: a=_______(a>0),并验证你的结论. 解: a= 验证:a= ===. 例14.计算: (1) (2) (3) (4) 分析:上面4小题利用=(a≥0,b>0)便可直接得出答案. 解:(1)===2 (2)==×=2 (3)===2 (4)===2 例15.化简: (1) (2) (3) (4) 分析:直接利用=(a≥0,b>0)就可以达到化简之目的. 解:(1)= (2)= (3)= (4)= 例16.已知,且x为偶数,求(1+x)的值. 分析:式子=,只有a≥0,b>0时才能成立. 因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8. 解:由题意得,即 ∴6<x≤9 ∵x为偶数 ∴x=8 ∴原式=(1+x) =(1+x) =(1+x)= ∴当x=8时,原式的值==6. 变式题1.计算的结果是( ). 变式题2.阅读下列运算过程: , 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是( ). 变式题3.已知x=3,y=4,z=5,那么的最后结果是_______. 变式题4.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 解:设:矩形房梁的宽为x(cm),则长为xcm,依题意, 得:(x)2+x2=(3)2, 4x2=9×15,x=(cm), x·x=x2=(cm2). 变式题5.计算 (1)·(-)÷(m>0,n>0) (2)-3÷()× (a>0) 解:(1)原式=-÷=- =-=- (2)原式=-2=-2=-a 例17.把它们化成最简二次根式: (1) ; (2) ; (3) 点评:二次根式有如下两个特点: 1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式. 例18.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长. 解:因为AB2=AC2+BC2 所以AB===6.5(cm) 因此AB的长为6.5cm. 例19.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: ==-1, ==-, 同理可得:=-,…… 从计算结果中找出规律,并利用这一规律计算 (+++……)(+1)的值. 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的. 解:原式=(-1+-+-+……+-)×(+1) =(-1)(+1) =2002-1=2001 练习: 一、选择题 1.如果(y>0)是二次根式,那么,化为最简二次根式是( ). A.(y>0) B.(y>0) C.(y>0) D.以上都不对 2.把(a-1)中根号外的(a-1)移入根号内得( ). A. B. C.- D.- 3.在下列各式中,化简正确的是( ) A.=3 B.=± C.=a2 D. =x 4.化简的结果是( ) A.- B.- C.- D.- 二、填空题 1.化简=_________.(x≥0) 2.a化简二次根式号后的结果是_________. 三、综合提高题 1.已知a为实数,化简:-a,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程: 解:-a=a-a·=(a-1) 2.若x、y为实数,且y=,求的值. 答案: 一、1.C 2.D 3.C 4.C 二、1.x 2.- 三、1.不正确,正确解答: 因为,所以a<0, 原式=-a·=·-a·=-a+=(1-a) 2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y= ∴ . 例20.计算 (1)+ (2)+ 分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并. 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 点评:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并. 例21.计算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=++- =4+2+2-=6+ 例22.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值. 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值. 解:∵4x2+y2-4x-6y+10=0 ∵4x2-4x+1+y2-6y+9=0 ∴(2x-1)2+(y-3)2=0 ∴x=,y=3 原式=+y2-x2+5x =2x+-x+5 =x+6 当x=,y=3时, 原式=×+6=+3 练习: 一、选择题 1.以下二次根式:①;②;③;④中,与是同类二次根式的是( ). A.①和② B.②和③ C.①和④ D.③和④ 2.下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有( ). A.3个 B.2个 C.1个 D.0个 二、填空题 1.在、、、、、3、-2中,与是同类二次根式的有________. 2.计算二次根式5-3-7+9的最后结果是________. 三、综合提高题 1.已知≈2.236,求(-)-(+)的值.(结果精确到0.01) 2.先化简,再求值. (6x+)-(4x+),其中x=,y=27. 答案: 一、1.C 2.A 二、1. 2.6-2 三、1.原式=4---=≈×2.236≈0.45 2.原式=6+3-(4+6)=√xy(3-4x/y)=12.5√2 例23.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示) 分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值. 解:设x 后△PBQ的面积为35平方厘米. 则有PB=x,BQ=2x 依题意,得:x·2x=35 x2=35 x= 所以秒后△PBQ的面积为35平方厘米. PQ==5 答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米. 例23.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)? 分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度. 解:由勾股定理,得 AB==2 BC== 所需钢材长度为 AB+BC+AC+BD =2++5+2 =3+7 ≈3×2.24+7≈13.7(m) 答:要焊接一个如图所示的钢架,大约需要13.7m的钢材. 例24.若最简根式与根式是同类二次根式,求a、b的值.(同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b. 解:首先把根式化为最简二次根式: ==|b|· 由题意得 ∴ ∴a=1,b=1 练习: 一、选择题 1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(结果用最简二次根式) A.5 B. C.2 D.以上都不对 2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示) A.13 B. C.10 D.5 二、填空题 1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式) 2.已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是________.(结果用最简二次根式) 三、综合提高题 1.若最简二次根式与是同类二次根式,求m、n的值. 2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,你知道是谁的二次根式呢?下面我们观察: (-1)2=()2-2·1·+12=2-2+1=3-2 反之,3-2=2-2+1=(-1)2 ∴3-2=(-1)2 ∴=-1 求:(1); (2); (3)你会算吗?(√3-1) (4)若=,则m、n与a、b的关系是什么?并说明理由. 答案: 一、1.A 2.C 二、1.20 2.2+2 三、1.依题意,得 , , 所以或 或 或 2.(1)==+1 (2)==+1 (3)==-1 (4) 理由:两边平方得a±2=m+n±2 所以 例25.计算: (1)(+)× (2)(4-3)÷2 分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律. 解:(1)(+)×=×+× =+=3+2 解:(4-3)÷2=4÷2-3÷2 =2- 例26.计算 (1)(+6)(3-) (2)(+)(-) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)(+6)(3-) =3-()2+18-6 =13-3 (2)(+)(-)=()2-()2 =10-7=3 例27.已知=2-,其中a、b是实数,且a+b≠0, 化简+,并求值。 分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可. 解:原式=+ =+ =(x+1)+x-2+x+2 =4x+2 ∵=2- ∴b(x-b)=2ab-a(x-a) ∴bx-b2=2ab-ax+a2 ∴(a+b)x=a2+2ab+b2 ∴(a+b)x=(a+b)2 ∵a+b≠0 ∴x=a+b ∴原式=4x+2=4(a+b)+2 练习: 一、选择题 1.(-3+2)×的值是( ). A.-3 B.3- C.2- D.- 2.计算(+)(-)的值是( ). A.2 B.3 C.4 D.1 二、填空题 1.(-+)2的计算结果(用最简根式表示)是________. 2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______. 3.若x=-1,则x2+2x+1=________. 4.已知a=3+2,b=3-2,则a2b-ab2=_________. 三、综合提高题 1.化简 2.当x=时,求+的值.(结果用最简二次根式表示) 课外知识 1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是( ). A.与 B.与 C.与 D.与 2.互为有理化因式:互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式. 练习:+的有理化因式是________; x-的有理化因式是_________. --的有理化因式是_______. 3.分母有理化是指把分母中的根号化去,通常在分子、分母上同乘以一个二次根式,达到化去分母中的根号的目的. 练习:把下列各式的分母有理化 (1);(2);(3);(4). 4.其它材料:如果n是任意正整数,那么=n 理由:==n 练习:填空=____;=_____;=_______. 答案: 一、1.A 2.D 二、1.1- 2.4-24 3.2 4.4 三、1.原式= == =-(-)=- 2.原式= === 2(2x+1) ∵x==+1 原式=2(2+3)=4+6. 例28.比较与的大小。 解:因为:(√3+√2)(√3-√2)=1;(√2+1)(√2-1)=1 所以,(√3-√2)=1/(√3+√2);(√2-1)=1/(√2+1), 又因为:(√3+√2)>(√2+1) 所以,(√2-1)>(√3-√2)。 变式题1:比较与的大小。 变式题2:试比较与的大小。 例29.已知的整数部分为a,小数部分为b,求a-b. 解:∵2<√6<3, ∴3<√6+1<4,即整数部分a=3,小数部分,b=√6+1-3=√6-2,则:a-b=3-(√6-2)=5-√6。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 复习 专题 讲义 补课
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文