初二全等三角形练习题及答案.doc
《初二全等三角形练习题及答案.doc》由会员分享,可在线阅读,更多相关《初二全等三角形练习题及答案.doc(8页珍藏版)》请在咨信网上搜索。
2012北京中考一模之全等三角形试题精编 2012.6北京中考 16.已知:如图,点在同一条直线上,,. 求证:. 16、△BAC≌△BCD(SAS) 所以,BC=ED 2012.5海淀一模A B C D E F 15. 如图,AC//FE, 点F、C在BD上,AC=DF, BC=EF. 求证:AB=DE. 15.证明:∵ AC //EF, ∴ . ………………………………………1分 A B C D E F 在△ABC和△DEF中, ∴ △ABC≌△DEF. ………………………………4分 ∴ AB=DE. ……………………5分 2012.5东城一模 16. 如图,点在同一直线上,,,要使≌,还需添加的一个条件是 (只需写出一个即可),并加以证明. 16.(本小题满分5分) 解:可添加的条件为:(写出其中一个即可). …1分 证明:∵ , ∴ . 即 . -------2分 在△ABC和△DEF中, ∴ △ABC≌△DEF. --------5分 2012.5西城一模 15.如图,在△ABC中,AB=CB,∠ABC=90º,D为AB延长线 上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. (1) 求证:△ABE≌△CBD; (2) 若∠CAE=30º,求∠BCD的度数. 15.(1)证明:如图1. ∵ ∠ABC=90º,D为AB延长线上一点, ∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE和△CBD中, 图1 ∴ △ABE≌△CBD. …………………… 2分 (2)解:∵ AB=CB,∠ABC=90º, ∴ ∠CAB=45°. …….…………………… 3分 又∵ ∠CAE=30º, ∴ ∠BAE =15°. ……………………………………………………………4分 ∵ △ABE≌△CBD, ∴ ∠BCD=∠BAE =15°. ……………………………………………………5分 2012.5通州一模 15.如图,在△ABC和△ADE中,AB=AC,AD=AE,, 求证:△ABD≌△ACE. 15. 解: ..........................................................................(3分) .....................................................................(4分) 在和中 ≌() .............................................................(5分) 第16题图 2012.5石景山一模 16.如图,∠ACB=∠CDE=90°,B是CE的中点, ∠DCE=30°,AC=CD. 求证:AB∥DE. 16.证明:∵∠CDE=90°,∠DCE=30° ∴ ………………1分 ∵B是CE的中点, ∴ ∴DE=CB ………………2分 在△ABC和△CED中 ∴△ABC≌△CED ………………3分 ∴∠ABC=∠E ………………4分 ∴AB∥DE. ………………5分 2012.5房山一模 15.已知:E是△ABC一边BA延长线上一点,且AE=BC ,过点A作AD∥BC,且使AD=AB,联结ED.求证:AC=DE. 15. 证明:∵AD∥BC ∴∠EAD=∠B. …………………………1分 ∵AD=AB. ……………………………2分 AE=BC. ……………………………3分 ∴△ABC≌△DAE.……………………4分 ∴AC=DE. …………………………5分 2012.5昌平一模 16.如图,已知△ABC和△ADE都是等边三角形,连结CD、BE.求证:CD=BE. 16.证明:∵ △ABC和△ADE都是等边三角形, ∴ AB=AC,AE=AD,∠DAE=∠CAB, ∵ ∠DAE-∠CAE =∠CAB-∠CAE, ∴ ∠DAC =∠EAB, ∴ △ADC≌△AEB. ……………………… 4分 ∴ CD=BE. ……………………… 5分 2012.5门头沟一模 16.已知:如图,AB∥ED,AE交BD于点C,且BC=DC. 求证:AB=ED. 16.证明:∵AB∥ED, ∴∠ABD=∠EDB. ………………………….1分 ∵BC=DC,∠ACB=∠DCE, ……………3分 ∴△ABC≌△EDC. ………………….4分 ∴AB=ED. ………………………………5分 2012.5丰台一模 16.已知:如图,AB∥CD,AB=CD,点E、F在线段AD上,且AF=DE.求证:BE=CF. 16.证明: AF=DE, AF-EF=DE –EF. 即 AE=DF.………………1分 AB∥CD,∠A=∠D.……2分 在△ABE和△DCF中 , AB=CD, ∠A=∠D, AE=DF. △ABE ≌△DCF.……….4分 BE=CF.…………….5分 2012.5丰台一模 24.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,联结EC,取EC的中点M,联结BM和DM. (1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是 ; (2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由. 24.解:(1)BM=DM且BM⊥DM. ………2分 (2)成立. ……………3分 9 理由如下:延长DM至点F,使MF=MD,联结CF、BF、BD. 易证△EMD≌△CMF.………4分 ∴ED=CF,∠DEM=∠1. ∵AB=BC,AD=DE,且∠ADE=∠ABC=90°, ∴∠2=∠3=45°, ∠4=∠5=45°. ∴∠BAD=∠2+∠4+∠6=90°+∠6. ∵∠8=360°-∠5-∠7-∠1,∠7=180°-∠6-∠9, ∴∠8=360°-45°-(180°-∠6-∠9)-(∠3+∠9) =360°-45°-180°+∠6+∠9- 45°-∠9 =90°+∠6 . ∴∠8=∠BAD.………5分 又AD=CF. ∴△ABD≌△CBF. ∴BD=BF,∠ABD=∠CBF.………6分 ∴∠DBF=∠ABC=90°. ∵MF=MD, ∴BM=DM且BM⊥DM..…………7分 2012.5海淀一模 22.阅读下面材料: 小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形, ÐAOB=ÐCOD =90°.若△BOC的面积为1, 试求以AD、BC、OC+OD的长度为三边长的三角形的面积. A D C O B E B O C D A 图1 图2 小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E, 使得OE=CO, 连接BE, 可证△OBE≌△OAD, 从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2). I H G F A B C D E 请你回答:图2中△BCE的面积等于 . 请你尝试用平移、旋转、翻折的方法,解决下列问题: 如图3,已知△ABC, 分别以AB、AC、BC为边向外作正方形 ABDE、AGFC、BCHI, 连接EG、FH、ID. (1)在图3中利用图形变换画出并指明以EG、FH、ID的长 度为三边长的一个三角形(保留画图痕迹); (2)若△ABC的面积为1,则以EG、FH、ID的长度为 三边长的三角形的面积等于 . 图3 22. 解:△BCE的面积等于 2 . …………1分 (1)如图(答案不唯一): ……2分 以EG、FH、ID的长度为三边长的 一个三角形是△EGM . …………3分 (2) 以EG、FH、ID的长度为三边长的三角 形的面积等于 3 . …………5分 2012.5西城一模 24.已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F. (1) 求证:BF∥AC; (2) 若AC边的中点为M,求证:; (3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论. 图1 图2 24.证明:(1)如图6. ∵ 点B关于直线CH的对称点为D, 图6 CH⊥AB于点H, 直线DE交直线CH于点F, ∴ BF=DF,DH=BH.…………………1分 ∴ ∠1=∠2. 又∵ ∠EDA=∠A,∠EDA=∠1, ∴ ∠A=∠2. ∴ BF∥AC.……………………………………………………………… 2分 (2)取FD的中点N,连结HM、HN. ∵ H是BD的中点,N是FD的中点, 图7 ∴ HN∥BF. 由(1)得BF∥AC, ∴ HN∥AC,即HN∥EM. ∵ 在Rt△ACH中,∠AHC=90°, AC边的中点为M, ∴ . ∴ ∠A=∠3. ∴ ∠EDA=∠3. ∴ NE∥HM. ∴ 四边形ENHM是平行四边形.……………………………………… 3分 ∴ HN=EM. ∵ 在Rt△DFH中,∠DHF=90°,DF的中点为N, ∴ ,即. ∴ . ………………………………………………………… 4分 (3)当AB=BC时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF和CE. (只猜想结论不给分) 证明:连结CD.(如图8) ∵ 点B关于直线CH的对称点为D,CH⊥AB于点H, 图8 ∴ BC=CD,∠ABC=∠5. ∵ AB=BC, ∴ , AB=CD.① ∵ ∠EDA=∠A, ∴ ,AE=DE.② ∴ ∠ABC=∠6=∠5. ∵ ∠BDE是△ADE的外角, ∴ . ∵ , ∴ ∠A=∠4.③ 由①,②,③得 △ABE≌△DCE.………………………………………5分 ∴ BE= CE. ……………………………………………………………… 6分 由(1)中BF=DF得 ∠CFE=∠BFC. 由(1)中所得BF∥AC 可得 ∠BFC=∠ECF. ∴ ∠CFE=∠ECF. ∴ EF=CE. ∴ BE=EF. ……………………………………………………………… 7分 ∴ BE=EF=CE. (阅卷说明:在第3问中,若仅证出BE=EF或BE=CE只得2分) 2012北京中考 24.在中,,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段。 (1) 若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数; (2) 在图2中,点不与点重合,线段的延长线与射线交于点,猜想的大小(用含的代数式表示),并加以证明; (3) 对于适当大小的,当点在线段上运动到某一位置(不与点,重合)时,能使得线段的延长线与射线交于点,且,请直接写出的范围。 24、【解析】 ⑴ , ⑵ 连接,易证 ∴ 又∵ ∴, ∴ ∴ ∴ ∴ ∴ ⑶ ∵且 ∴ ∵点不与点重合 ∴ ∴ ∴ 【评价】此题并没有考察常见的动点问题,而是将动点问题和几何变换结合在一起,应用一个点构造2倍角。需要同学们注意图形运动过程中的不变量,此题可以用倒角(上述答案的方法)或是构造辅助圆的方法解决。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 全等 三角形 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文