一元一次不等式组专题知识点与经典习题.doc
《一元一次不等式组专题知识点与经典习题.doc》由会员分享,可在线阅读,更多相关《一元一次不等式组专题知识点与经典习题.doc(9页珍藏版)》请在咨信网上搜索。
一元一次不等式(组)复习 一.知识梳理 1.知识结构图 概念 基本性质 不等式的定义 不等式的解法 一元一次不等式 的解法 一元一次不等式组 的解法 不等式 实际应用 不等式的解集 (二).知识点回顾 1.不等式 用不等号连接起来的式子叫做不等式. 常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集 不等式的解:使不等式成立的未知数的值,叫做不等式的解. 不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。 说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点) (1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果,那么 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,那么(或) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果那么(或) 说明:常见不等式所表示的基本语言与含义还有: ①若a-b>0,则a大于b ;②若a-b<0,则a小于b ;③若a-b≥0,则a不小于b ;④若a-b≤0,则a不大于b ;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号。 任意两个实数a、b的大小关系:①a-b>Oa>b;②a-b=Oa=b;③a-b<Oa<b. 不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c。 4.一元一次不等式(重点) 只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0). 5.解一元一次不等式的一般步骤(重难点) (1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1. 说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 例: 解:去分母,得 (不要漏乘!每一项都得乘) 去括号,得 (注意符号,不要漏乘!) 移 项,得 (移项要变号) 合并同类项,得 (计算要正确) 系数化为1, 得 (同除负,不等号方向要改变,分子分母别颠倒了) 6.一元一次不等式组 含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 7.一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集. 一元一次不等式组的解集通常利用数轴来确定. 8. 不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)(重难点) 不等式组 图示 解集 (同大取大) (同小取小) (大小交叉取中间) 无解(大小分离解为空) 9.解一元一次不等式组的步骤 (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. (三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. +1>2 B.x2>9 C.2x+y≤5 D. (x-3)<0 2.若是关于x的一元一次不等式,则该不等式的解集为 . 用不等式表示 a与6的和小于5; x与2的差小于-1; 数轴题 1.a,b两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a__________b; |a|__________|b|; a+b__________0 a-b__________0; a+b__________a-b; ab__________a. 2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是( ) A、ab>0 B、 C、a-b>0 D、a+b>0 同等变换 1.与2x<6不同解的不等式是( ) A.2x+1<7 B.4x<12 C.-4x>-12 D.-2x<-6 1.解不等式组 2。解不等式 3.解不等式≤1,并把它的解集在数轴上表示出来. 此类试题易错知识辨析 (1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集: 当时,(或) 当时,(或) 当时,(或) 4 若不等式(a+1)x>a+1的解集是x<1,则a必满足( ). (A)a<0 (B)a>-1 (C)a<-1 (D)a<1 5 若m>5,试用m表示出不等式(5-m)x>1-m的解集______. 6.如果不等式(m-2)x>2-m的解集是x<-1,则有( ) A.m>2 B.m<2 C.m=2 D.m≠2 7.如果不等式(a-3)x<b的解集是x<,那么a的取值范围是________. 限制条件的解 1.不等式3(x-2)≤x+4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x-的最大的整数解为( ) A.1 B.0 C.-1 D.不存在 含绝对值不等式 1. 不等式|x|<的整数解是________.不等式|x|<1的解集是________. 分类讨论 1.已知ax<2a(a≠0)是关于x的不等式,那么它的解集是( ) A.x<2 B.x>-2 C.当a>0时,x<2 D.当a>0时,x<2;当a<0时,x>2 不等式的性质及应用 1. 若x+y>x-y,y-x>y,那么(1)x+y>0,(2)y-x<0,(3)xy≤0,(4)<0中,正确结论的序号为________。 2. 下列不等式变形正确的是( ) (A)由>,得< (B)由>,得< (C)由>,得> (D)由>,得> 依据题意列不等式 1.当x_______时,代数式2x-5的值不大于0. 2.当x________时,代数式的值是非负数. 3.当代数式-3x的值大于10时,x的取值范围是________. 4.已知x的与3的差小于x的-与-6的和,根据这个条件列出不等式.你能估计出它的解集吗? 已知解集求范围 1.关于x的方程5-a(1-x)=8x-(3-a)x的解是负数,则a的取值范围是( ) A、a<-4 B、a>5 C、a>-5 D、a<-5 2.已知-4是不等式ax>9的解集中的一个值,试求a的取值范围. 3.已知不等式-1>x与ax-6>5x同解,试求a的值. 4.如果关于x的不等式-k-x+6>0的正整数解为1,2,3,正整数k应取怎样的值? 5.不等式a(x-1)>x+1-2a的解集是x<-1,请确定a是怎样的值. 6.已知关于x,y的方程组的解满足x>y,求p的取值范围. 7.若关于x的方程3x+2m=2的解是正数,则m的取值范围是( ) A.m>1 B.m<1 C.m≥1 D.m≤1 字母不等式 1已知关于的不等式2<的解集为<,则的取值范围是( ). A.>0 B.>1 C.<0 D.<1 2若关于的不等式的整数解共有4个,则的取值范围是( ) A. B. C. D. 3关于x的方程的解为正实数,则k的取值范围是 . 4已知关于 x,y 的方程组的解满足x>y,求p的取值. 5若不等式组有解,则k的取值范围是( ). (A)k<2 (B)k≥2 (C)k<1 (D)1≤k<2 6等式组的解集是x>2,则m的取值范围是( ). (A)m≤2 (B)m≥2 (C)m≤1 (D)m≥1 7知(x-2)2+|2x-3y-a|=0,y是正数,则a的取值范围是______. 8 k满足______时,方程组中的x大于1,y小于1. 9 若m、n为有理数,解关于x的不等式(-m2-1)x>n. 课后作业: 1.当时,求关于x的不等式的解集. 2.当k取何值时,方程组的解x,y都是负数. 3.已知中的x,y满足0<y-x<1,求k的取值范围. 4.已知a是自然数,关于x的不等式组的解集是x>2,求a的值. 5.关于x的不等式组的整数解共有5个,求a的取值范围. 6.k取哪些整数时,关于x的方程5x+4=16k-x的根大于2且小于10? 7.已知关于x,y的方程组的解为正数,求m的取值范围. 8.若关于x的不等式组只有4个整数解,求a的取值范围. 9.如果不等式组的解集是,那么的值为 . 10.如果一元一次不等式组的解集为.则的取值范围是( ) A. B. C. D. 11.若不等式组有解,则a的取值范围是( ) A. B. C. D. 12.关于x的不等式组的解集是,则m = . 13.已知关于x的不等式组只有四个整数解,则实数的取值范围是 .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 一次 不等式 专题 知识点 经典 习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文