工程数学线性代数第五版答案04.doc
《工程数学线性代数第五版答案04.doc》由会员分享,可在线阅读,更多相关《工程数学线性代数第五版答案04.doc(32页珍藏版)》请在咨信网上搜索。
1、第四章向量组的线性相关性 1. 设v1=(1, 1, 0)T, v2=(0, 1, 1)T, v3=(3, 4, 0)T, 求v1-v2及3v1+2v2-v3. 解 v1-v2=(1, 1, 0)T-(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T. 3v1+2v2-v3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(31+20-3, 31+21-4, 30+21-0)T =(0, 1, 2)T. 2. 设3(a1-a)+2(a2+a)=5(a3+a), 求a, 其中a1=(2, 5, 1, 3)T, a2=(10, 1, 5,
2、 10)T, a3=(4, 1, -1, 1)T. 解 由3(a1-a)+2(a2+a)=5(a3+a)整理得 =(1, 2, 3, 4)T. 3. 已知向量组 A: a1=(0, 1, 2, 3)T, a2=(3, 0, 1, 2)T, a3=(2, 3, 0, 1)T; B: b1=(2, 1, 1, 2)T, b2=(0, -2, 1, 1)T, b3=(4, 4, 1, 3)T, 证明B组能由A组线性表示, 但A组不能由B组线性表示. 证明 由 知R(A)=R(A, B)=3, 所以B组能由A组线性表示. 由 知R(B)=2. 因为R(B)R(B, A), 所以A组不能由B组线性表示.
3、 4. 已知向量组 A: a1=(0, 1, 1)T, a2=(1, 1, 0)T; B: b1=(-1, 0, 1)T, b2=(1, 2, 1)T, b3=(3, 2, -1)T, 证明A组与B组等价. 证明 由,知R(B)=R(B, A)=2. 显然在A中有二阶非零子式, 故R(A)2, 又R(A)R(B, A)=2, 所以R(A)=2, 从而R(A)=R(B)=R(A, B). 因此A组与B组等价. 5. 已知R(a1, a2, a3)=2, R(a2, a3, a4)=3, 证明 (1) a1能由a2, a3线性表示; (2) a4不能由a1, a2, a3线性表示. 证明 (1)由
4、R(a2, a3, a4)=3知a2, a3, a4线性无关, 故a2, a3也线性无关. 又由R(a1, a2, a3)=2知a1, a2, a3线性相关, 故a1能由a2, a3线性表示. (2)假如a4能由a1, a2, a3线性表示, 则因为a1能由a2, a3线性表示, 故a4能由a2, a3线性表示, 从而a2, a3, a4线性相关, 矛盾. 因此a4不能由a1, a2, a3线性表示. 6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T, (2, 1, 0)T, (1, 4, 1)T; (2) (2, 3, 0)T, (-1, 4, 0)T, (0,
5、0, 2)T. 解 (1)以所给向量为列向量的矩阵记为A. 因为 , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B. 因为 , 所以R(B)=3等于向量的个数, 从而所给向量组线性相无关. 7. 问a取什么值时下列向量组线性相关? a1=(a, 1, 1)T, a2=(1, a, -1)T, a3=(1, -1, a)T. 解 以所给向量为列向量的矩阵记为A. 由 知, 当a=-1、0、1时, R(A)3, 此时向量组线性相关. 8. 设a1, a2线性无关, a1+b, a2+b线性相关, 求向量b用a1, a2线性表示的表示式. 解 因为
6、a1+b, a2+b线性相关, 故存在不全为零的数l1, l2使 l1(a1+b)+l2(a2+b)=0, 由此得 , 设, 则 b=ca1-(1+c)a2, cR. 9. 设a1, a2线性相关, b1, b2也线性相关, 问a1+b1, a2+b2是否一定线性相关?试举例说明之. 解 不一定. 例如, 当a1=(1, 2)T, a2=(2, 4)T, b1=(-1, -1)T, b2=(0, 0)T时, 有 a1+b1=(1, 2)T+b1=(0, 1)T, a2+b2=(2, 4)T+(0, 0)T=(2, 4)T, 而a1+b1, a2+b2的对应分量不成比例, 是线性无关的. 10.
7、 举例说明下列各命题是错误的: (1)若向量组a1, a2, , am是线性相关的, 则a1可由a2, , am线性表示. 解 设a1=e1=(1, 0, 0, , 0), a2=a3= =am=0, 则a1, a2, , am线性相关, 但a1不能由a2, , am线性表示. (2)若有不全为0的数l1, l2, , lm使l1a1+ +lmam+l1b1+ +lmbm=0成立, 则a1, a2, , am线性相关, b1, b2, , bm亦线性相关. 解 有不全为零的数l1, l2, , lm使l1a1+ +lmam +l1b1+ +lmbm =0,原式可化为l1(a1+b1)+ +lm
8、(am+bm)=0. 取a1=e1=-b1, a2=e2=-b2, , am=em=-bm, 其中e1, e2, , em为单位坐标向量, 则上式成立, 而a1, a2, , am和b1, b2, , bm均线性无关. (3)若只有当l1, l2, , lm全为0时, 等式l1a1+ +lmam+l1b1+ +lmbm=0才能成立, 则a1, a2, , am线性无关, b1, b2, , bm亦线性无关. 解 由于只有当l1, l2, , lm全为0时, 等式由l1a1+ +lmam+l1b1+ +lmbm =0成立, 所以只有当l1, l2, , lm全为0时, 等式l1(a1+b1)+l
9、2(a2+b2)+ +lm(am+bm)=0成立. 因此a1+b1, a2+b2, , am+bm线性无关. 取a1=a2= =am=0, 取b1, , bm为线性无关组, 则它们满足以上条件, 但a1, a2, , am线性相关. (4)若a1, a2, , am线性相关, b1, b2, , bm亦线性相关, 则有不全为0的数, l1, l2, , lm使l1a1+ +lmam=0, l1b1+ +lmbm=0同时成立. 解 a1=(1, 0)T, a2=(2, 0)T, b1=(0, 3)T, b2=(0, 4)T, l1a1+l2a2 =0l1=-2l2,l1b1+l2b2 =0l1=
10、-(3/4)l2,l1=l2=0, 与题设矛盾. 11. 设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得 a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1,于是 a1 =b1-b2+a3 =b1-b2+b3-a4 =b1-b2+b3-b4+a1,从而 b1-b2+b3-b4=0, 这说明向量组b1, b2, b3, b4线性相关. 12. 设b1=a1, b2=a1+a2, , br =a1+a2+ +ar, 且向量组a1, a2, , ar线性无关, 证明向量组
11、b1, b2, , br线性无关. 证明 已知的r个等式可以写成,上式记为B=AK. 因为|K|=10, K可逆, 所以R(B)=R(A)=r, 从而向量组b1, b2, , br线性无关. 13. 求下列向量组的秩, 并求一个最大无关组: (1)a1=(1, 2, -1, 4)T, a2=(9, 100, 10, 4)T, a3=(-2, -4, 2, -8)T; 解由 , 知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组. (2)a1T=(1, 2, 1, 3), a2T=(4, -1, -5, -6), a
12、3T=(1, -3, -4, -7). 解 由, 知R(a1T, a2T, a3T)=R(a1, a2, a3)=2. 因为向量a1T与a2T的分量不成比例, 故a1T, a2T线性无关, 所以a1T, a2T是一个最大无关组. 14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1); 解 因为,所以第1、2、3列构成一个最大无关组. (2). 解 因为,所以第1、2、3列构成一个最大无关组. 15. 设向量组(a, 3, 1)T, (2, b, 3)T, (1, 2, 1)T, (2, 3, 1)T的秩为2, 求a, b. 解 设a1=(a, 3, 1)T, a2=(2, b,
13、 3)T, a3=(1, 2, 1)T, a4=(2, 3, 1)T. 因为, 而R(a1, a2, a3, a4)=2, 所以a=2, b=5. 16. 设a1, a2, , an是一组n维向量, 已知n维单位坐标向量e1, e2, , en能由它们线性表示, 证明a1, a2, , an线性无关. 证法一 记A=(a1, a2, , an), E=(e1, e2, , en). 由已知条件知, 存在矩阵K, 使E=AK. 两边取行列式, 得|E|=|A|K|.可见|A|0, 所以R(A)=n, 从而a1, a2, , an线性无关. 证法二 因为e1, e2, , en能由a1, a2,
14、, an线性表示, 所以R(e1, e2, , en)R(a1, a2, , an),而R(e1, e2, , en)=n, R(a1, a2, , an)n, 所以R(a1, a2, , an)=n, 从而a1, a2, , an线性无关. 17. 设a1, a2, , an是一组n维向量, 证明它们线性无关的充分必要条件是: 任一n维向量都可由它们线性表示. 证明 必要性: 设a为任一n维向量. 因为a1, a2, , an线性无关, 而a1, a2, , an, a是n+1个n维向量, 是线性相关的, 所以a能由a1, a2, , an线性表示, 且表示式是唯一的. 充分性: 已知任一n
15、维向量都可由a1, a2, , an线性表示, 故单位坐标向量组e1, e2, , en能由a1, a2, , an线性表示, 于是有n=R(e1, e2, , en)R(a1, a2, , an)n,即R(a1, a2, , an)=n, 所以a1, a2, , an线性无关. 18. 设向量组a1, a2, , am线性相关, 且a10, 证明存在某个向量ak (2km), 使ak能由a1, a2, , ak-1线性表示. 证明 因为a1, a2, , am线性相关, 所以存在不全为零的数l1, l2, , lm, 使l1a1+l2a2+ +lmam=0,而且l2, l3, , lm不全为
16、零. 这是因为, 如若不然, 则l1a1=0, 由a10知l1=0, 矛盾. 因此存在k(2km), 使lk0, lk+1=lk+2= =lm=0,于是 l1a1+l2a2+ +lkak=0,ak=-(1/lk)(l1a1+l2a2+ +lk-1ak-1),即ak能由a1, a2, , ak-1线性表示. 19. 设向量组B: b1, , br能由向量组A: a1, , as线性表示为(b1, , br)=(a1, , as)K, 其中K为sr矩阵, 且A组线性无关. 证明B组线性无关的充分必要条件是矩阵K的秩R(K)=r. 证明令B=(b1, , br), A=(a1, , as), 则有B
17、=AK. 必要性: 设向量组B线性无关. 由向量组B线性无关及矩阵秩的性质, 有 r=R(B)=R(AK)minR(A), R(K)R(K), 及 R(K)minr, sr.因此R(K)=r. 充分性: 因为R(K)=r, 所以存在可逆矩阵C, 使为K的标准形. 于是 (b1, , br)C=( a1, , as)KC=(a1, , ar). 因为C可逆, 所以R(b1, , br)=R(a1, , ar)=r, 从而b1, , br线性无关. 20. 设,证明向量组a1, a2, , an与向量组b1, b2, , bn等价. 证明 将已知关系写成,将上式记为B=AK. 因为,所以K可逆,
18、故有A=BK -1. 由B=AK和A=BK -1可知向量组a1, a2, , an与向量组b1, b2, , bn可相互线性表示. 因此向量组a1, a2, , an与向量组b1, b2, , bn等价. 21. 已知3阶矩阵A与3维列向量x满足A3x=3Ax-A2x, 且向量组x, Ax, A2x线性无关. (1)记P=(x, Ax, A2x), 求3阶矩阵B, 使AP=PB; 解 因为 AP=A(x, Ax, A2x) =(Ax, A2x, A3x) =(Ax, A2x, 3Ax-A2x) , 所以. (2)求|A|. 解 由A3x=3Ax-A2x, 得A(3x-Ax-A2x)=0. 因为
19、x, Ax, A2x线性无关, 故3x-Ax-A2x0, 即方程Ax=0有非零解, 所以R(A)3, |A|=0. 22. 求下列齐次线性方程组的基础解系: (1); 解对系数矩阵进行初等行变换, 有 , 于是得 . 取(x3, x4)T=(4, 0)T, 得(x1, x2)T=(-16, 3)T; 取(x3, x4)T=(0, 4)T, 得(x1, x2)T=(0, 1)T. 因此方程组的基础解系为 x1=(-16, 3, 4, 0)T, x2=(0, 1, 0, 4)T. (2). 解 对系数矩阵进行初等行变换, 有 , 于是得 . 取(x3, x4)T=(19, 0)T, 得(x1, x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 数学 线性代数 第五 答案 04
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。