上海初三中考数学第23题专项复习.doc
《上海初三中考数学第23题专项复习.doc》由会员分享,可在线阅读,更多相关《上海初三中考数学第23题专项复习.doc(6页珍藏版)》请在咨信网上搜索。
上海初三中考数学第23题(几何证明、计算题)专题复习 一、历年上海中考真题 2010:23.已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE. (1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形; (2)∠ABC=60°,EC=2BE,求证:ED⊥DC. 2011:23.(本题满分12分,每小题满分各6分) 如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC. (1)求证:四边形ABFC是平行四边形; (2)如果DE2=BE·CE,求证四边形ABFC是矩形. 2012:23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 己知:如图,在菱形中,点、分别在边、,∠ =∠,与交于点. (1)求证: (2)当要=时,求证:四边形是平行四边形. 图8 2013:23.如图8,在△中,, ,点为边的中点,交于点,交的延长线于点. (1)求证:; (2)联结,过点作的垂线交的 延长线于点,求证:. 2014:22.(本题满分10分,每小题满分各5分) 如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH. (1)求sinB的值; (2)如果CD=,求BE的值. 23.(本题满分12分,每小题满分各6分) 已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD. 二、 历年金山区模拟考真题 (15一模)23.(本题满分12分)O A C P D O1 B 如图,已知⊙与⊙外离,与分别是⊙与⊙的半径,∥.直线交于点,交⊙于点,交⊙于点. 求证:(1)∥;(2) G F E D B A C 第23题图 H (15二模)23.(本题满分12分)已知:如图,在中中,,,点在边上,延长至点,使,延长交于,过点作//,交于点,在上取一点,使. (1)求证:; (2) 求证:四边形是正方形. [注:若要用、等,请不要标在此图,要标在答题纸的图形上] (09二模)23(本题满分10分)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE = BC. D A B C (第23题图) E (1)求证:∠E =∠DBC; (2)若等腰梯形ABCD的中位线长为6,∠E =, 求等腰梯形ABCD的对角线的长。 三、2015年中考题型展望 上海中考数学试卷的出题风格在23题上相对固定,旨在考察学生对于几何问题证明或者计算基本图形之间的综合掌握。题目难度主要以中档层次题目为主,一般不存在找不到思路的情况。若熟练掌握基本几何知识点,就能以不变应万变解答出此类中考问题。 几何证明及计算 (1)特殊三角形的边、角计算(2)特殊三角形的边、角计算。(3)特殊三角形、特殊四边形的性质应用(4)三角形中位线(5)全等三角形、相似三角形的判定和性质应用(6)正多边形的对称性问题(7)圆的垂径定理,圆的切线判定及性质(8)图形运动问题(平移、旋转、翻折)(9)几何图形与锐角三角比结合证明或计算(10)几何图形与函数结合证明或计算 *相似三角形的性质的考察加大力度,主要考察学生的思维及能力解决。 全等三角形的判定: ①边角边公理(SAS) ②角边角公理(ASA) ③角角边定理(AAS) ④边边边公理(SSS)⑤斜边、直角边公理(HL) 等腰三角形的性质: ①等腰三角形的两个底角相等; ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 等腰三角形的判定:有两个角相等的三角形是等腰三角形; 直角三角形的性质: ①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半; ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理); ④直角三角形中角所对的直角边等于斜边的一半; 直角三角形的判定: ①有两个角互余的三角形是直角三角形; ②如果三角形的三边长a、b 、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。 (4)四边形 多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数); 平行四边形的性质: ①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分; 平行四边形的判定: ①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。 矩形的性质:(除具有平行四边形所有性质外) ①矩形的四个角都是直角;②矩形的对角线相等; 矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形; 菱形的特征:(除具有平行四边形所有性质外 ①菱形的四边相等;②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角; 菱形的判定:四边相等的四边形是菱形; 正方形的特征: ①正方形的四边相等;②正方形的四个角都是直角; ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角; 正方形的判定: ①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。 等腰梯形的特征:①等腰梯形同一底边上的两个内角相等 ②等腰梯形的两条对角线相等。 等腰梯形的判定:①同一底边上的两个内角相等的梯形是等腰梯形;②两条对角线相等的梯形是等腰梯形。 圆点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d): ①点P在圆上,则d=r,反之也成立; ②点P在圆内,则d<r,反之也成立; ③点P在圆外,则d>r,反之也成立; 圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可得到另外两组也相等 圆的确定:不在一直线上的三个点确定一个圆; 垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧; 平行弦夹等弧:圆的两条平行弦所夹的弧相等; 圆心角定理:圆心角的度数等于它所对弧的度数; 圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等; 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等; 圆周角定理:圆周角的度数等于它所对的弧的度数的一半; 圆周角定理的推论:直径所对的圆周角是直角,反过来,的圆周角所对的弦是直径; 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线; 切线的性质定理:圆的切线垂直于过切点的半径; 切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角; 弧长计算公式:(R为圆的半径,n是弧所对的圆心角的度数,为弧长) 扇形面积:(R为半径,n是扇形所对的圆心角的度数,为扇形的弧长) (6)尺规作图(基本作图、利用基本图形作三角形和圆) 作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线垂线; 图形的相似比例的基本性质:如果,则,如果,则 相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例 相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例; ③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方; 相似多边形的性质: ①相似多边形的对应角相等;②相似多边形的对应边成比例; ③相似多边形的面积之比等于相似比的平方; 口诀:人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 几何图形线段长度计算三大方法: “勾股定理” “相似比例计算” “直角三角形中的三角函数- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 初三 中考 数学 23 专项 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文