2010中考数学压轴题精选一.doc
《2010中考数学压轴题精选一.doc》由会员分享,可在线阅读,更多相关《2010中考数学压轴题精选一.doc(14页珍藏版)》请在咨信网上搜索。
★★1、(2010北京)在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。 (1)求点B的坐标; (2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D,使得ED=PE,以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动) j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一 点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF 到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q 点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。 x y O 1 1 O A B C D E P y x 图1 解:(1)∵拋物线y= -x2+x+m2-3m+2经过原点,∴m2-3m+2=0,解得m1=1,m2=2,由题意知m¹1,∴m=2, ∴拋物线的解析式为y= -x2+x, ∵点B(2,n)在拋物线y= -x2+x上, ∴n=4,∴B点的坐标为(2,4)。 (2)j 设直线OB的解析式为y=k1x,求得直线OB的解析式为 y=2x,∵A点是拋物线与x轴的一个交点,可求得A点的坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为(a,2a),根据题意作等腰直角三角形PCD,如图1。可求得点C的坐标为(3a,2a),由C点在拋物线上,得2a= -´(3a)2+´3a,即a2-a=0,解得a1=,a2=0(舍去),∴OP=。 k 依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0), 点B(2,4),求得直线AB的解析式为y= -x+5,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况: 第一种情况:CD与NQ在同一条直线上。 如图2所示。可证△DPQ为等腰直角三角形。此时OP、DP、AQ的长可依次表示为t、4t、2t个单位。∴PQ=DP=4t,∴t+4t+2t=10,∴t=。 第二种情况:PC与MN在同一条直线上。 如图3所示。可证△PQM为等腰直角三角形。此时OP、AQ的长可依次表示为t、2t个单位。∴OQ=10-2t,∵F点在直线AB上,∴FQ=t,∴MQ=2t,∴PQ=MQ=CQ=2t, ∴t+2t+2t=10,∴t=2。 第三种情况:点P、Q重合时,PD、QM在同一条直线上, 如图4所示。此时OP、AQ的长可依次表示为t、2t个单位。∴t+2t=10, 图4 y x B O Q(P) N C D M E F ∴t=。综上,符合题意的t值分别为,2, 。 x y O A M (C) B (E) D P Q F N 图3 E x O A B C y P M Q N F D 图2 ★★2、(2010北京)问题:已知△ABC中,ÐBAC=2ÐACB,点D是△ABC内的一点,且AD=CD,BD=BA。探究ÐDBC与ÐABC度数的比值。 请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。 (1) 当ÐBAC=90°时,依问题中的条件补全右图。观察图形,AB与AC的数量关系为 ; 当推出ÐDAC=15°时,可进一步推出ÐDBC的度数为 ;可得到ÐDBC与ÐABC度数的比值为 ; (2) 当ÐBAC¹90°时,请你画出图形,研究ÐDBC与ÐABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。 A C B 解:(1) 相等;15°;1:3。 (2) 猜想:ÐDBC与ÐABC度数的比值与(1)中结论相同。 证明:如图2,作ÐKCA=ÐBAC,过B点作BK//AC交CK于点K, 连结DK。∵ÐBAC¹90°,∴四边形ABKC是等腰梯形, ∴CK=AB,∵DC=DA,∴ÐDCA=ÐDAC,∵ÐKCA=ÐBAC, B A C D K 1 2 3 4 5 6 图2 ∴ÐKCD=Ð3,∴△KCD@△BAD,∴Ð2=Ð4,KD=BD, ∴KD=BD=BA=KC。∵BK//AC,∴ÐACB=Ð6, ∵ÐKCA=2ÐACB,∴Ð5=ÐACB,∴Ð5=Ð6,∴KC=KB, ∴KD=BD=KB,∴ÐKBD=60°,∵ÐACB=Ð6=60°-Ð1, ∴ÐBAC=2ÐACB=120°-2Ð1, ∵Ð1+(60°-Ð1)+(120°-2Ð1)+Ð2=180°,∴Ð2=2Ð1, ∴ÐDBC与ÐABC度数的比值为1:3。 ★★3、(2010郴州)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C. (1)求点A的坐标; (2)当b=0时(如图(2)),与的面积大小关系如何?当时,上述关系还成立吗,为什么? (3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 第26题 图(1) 图(2) 解:(1)将x=0,代入抛物线解析式,得点A的坐标为(0,-4) (2)当b=0时,直线为,由解得, 所以B、C的坐标分别为(-2,-2),(2,2) , 所以(利用同底等高说明面积相等亦可) 当时,仍有成立. 理由如下 由,解得, 所以B、C的坐标分别为(-,-+b),(,+b), 作轴,轴,垂足分别为F、G,则, 而和是同底的两个三角形, 所以. (3)存在这样的b. 因为 所以,所以,即E为BC的中点 所以当OE=CE时,为直角三角形,因为 所以 ,而 所以,解得, 所以当b=4或-2时,ΔOBC为直角三角形. ★★4、(2010滨州)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点. (1)求A、B、C三点的坐标; (2)求过A、B、C三点的抛物线的解析式; (3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位? 解: 解:①由抛物线的对称性可知AM=BM 在Rt△AOD和Rt△BMC中,∵OD=MC,AD=BC, ∴△AOD≌△BMC.∴OA=MB=MA. 设菱形的边长为2m,在Rt△AOD中, ,解得m=1.∴DC=2,OA=1,OB=3. ∴A、B、C三点的坐标分别为(1,0)、(3,0)、(2,) ②设抛物线的解析式为y=(—2)2+ 代入A点坐标可得=— 抛物线的解析式为y=—(—2)2+ ③设抛物线的解析式为y=—(一2)2+k,代入D(0,)可得k=5 所以平移后的抛物线的解析式为y=—(一2)2+5,平移了5一=4个单位. ★★5、(2010长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中且、为实数. (1)求一次函数的表达式(用含b的式子表示); (2)试说明:这两个函数的图象交于不同的两点; (3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围. 解:(1)∵一次函数过原点∴设一次函数的解析式为y=kx ∵一次函数过(1,-b) ∴y=-bx (2)∵y=ax2+bx-2过(1,0)即a+b=2 由得 ① ∵△= ∴方程①有两个不相等的实数根∴方程组有两组不同的解 ∴两函数有两个不同的交点. (3)∵两交点的横坐标x1、x2分别是方程①的解 ∴ ∴= 或由求根公式得出。 ∵a>b>0,a+b=2 ∴2>a>1 令函数 ∵在1<a<2时y随a增大而减小. ∴ ∴ ∴ ★★6、(2010长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒. (1)用t的式子表示△OPQ的面积S; (2)求证:四边形OPBQ的面积是一个定值,并求出这个定值; (3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比. B A P x C Q O y 第26题图 解:(1)∵CQ=t,OP=t,CO=8 ∴OQ=8-t ∴S△OPQ=(0<t<8) (2)∵S四边形OPBQ=S矩形ABCD-S△PAB-S△CBQ ==32 ∴四边形OPBQ的面积为一个定值,且等于32 (3)当△OPQ与△PAB和△QPB相似时, △QPB必须是一个直角三角形,依题意只能是∠QPB=90° 又∵BQ与AO不平行 ∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ ∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP , ∴解得:t=4 经检验:t=4是方程的解且符合题意(从边长关系和速度) 此时P(,0) ∵B(,8)且抛物线经过B、P两点, ∴抛物线是,直线BP是: 设M(m, )、N(m,) ∵M在BP上运动 ∴ ∵与交于P、B两点且抛物线的顶点是P ∴当时, ∴= ∴当时,MN有最大值是2 ∴设MN与BQ交于H 点则、 ∴S△BHM== ∴S△BHM :S五边形QOPMH==3:29 ∴当MN取最大值时两部分面积之比是3:29. ★★7、(2010常德)如图9,已知抛物线轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点. (1)求此抛物线的解析式; (2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当的面积是面积的2倍时,求E点的坐标; (3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标. A B O C 图9 y x 解:(1)由二次函数与轴交于、两点可得: 解得: 故所求二次函数的解析式为. (2)∵S△CEF=2 S△BEF, ∴, ∵EF//AC,∴,∴△BEF~△BAC, ∴得故E点的坐标为(,0). (3)解法一:由抛物线与轴的交点为,则点的坐标为(0,-2). 若设直线的解析式为,则有 解得: 故直线的解析式为.若设点的坐标为, 又点是过点所作轴的平行线与直线的交点,则点的坐标为(.则有:= = 即当时,线段取大值,此时点的坐标为(-2,-3) 解法二:延长交轴于点,则.要使线段最长,则只须△的面积取大值时即可. 设点坐标为(,则有: = = = = = =- 即时,△的面积取大值,此时线段最长,则点坐标为(-2,-3) ★★8、(2010常德)如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE. (1)当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由. (2)当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M. ①求证:AG⊥CH; ②当AD=4,DG=时,求CH的长。 A B C D E F 图110 G A D 图11 F E B C G A D B C E F H M 图12 解:(1)成立. 四边形、四边形是正方形,∴ ∠∠. ∴∠90°-∠∠. ∴△△. ∴. (2)①类似(1)可得△△, ∴∠1=∠2 又∵∠=∠. ∴∠∠=. B A C D E F G 1 2 图12 H P M 即 ② 解法一: 过作于, 由题意有, ∴,则∠1=. 而∠1=∠2,∴∠2==∠1=. ∴ ,即. 在Rt中,==, 而∽,∴, 即, ∴. 再连接,显然有,∴. 所求的长为. B A C D E F G 1 2 图12 H P M 解法二:研究四边形ACDG的面积,过作于, 由题意有,∴,. 而以CD为底边的三角形CDG的高=PD=1, , ∴4×1+4×4=×CH+4 ×1.∴=. ★★9、(2010丹东)如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC, BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. 图① 图② 图③ 第25题图 A · B C D E F · · · 解:(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上, (2)成立. 证明: 法一:连结DE,DF. ∵△ABC是等边三角形, ∴AB=AC=BC.又∵D,E,F是三边的中点, ∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°. 又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°, ∴∠MDF=∠NDE. 在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE, ∴△DMF≌△DNE. N C A B F M D E N C A B F M D E ∴MF=NE. 法二:延长EN,则EN过点F. ∵△ABC是等边三角形, ∴AB=AC=BC. 又∵D,E,F是三边的中点, ∴EF=DF=BF. ∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°, ∴∠BDM=∠FDN.又∵DM=DN, ∠ABM=∠DFN=60°, ∴△DBM≌△DFN.∴BM=FN.∵BF=EF, ∴MF=EN. 法三:连结DF,NF. ∵△ABC是等边三角形, ∴AC=BC=AC. 又∵D,E,F是三边的中点, ∴DF为三角形的中位线,∴DF=AC=AB=DB. 又∠BDM+∠MDF=60°, ∠NDF+∠MDF=60°, ∴∠BDM=∠FDN. 在△DBM和△DFN中,DF=DB, DM=DN, ∠BDM=∠NDF,∴△DBM≌△DFN. ∴∠B=∠DFN=60°.又∵△DEF是△ABC各边中点所构成的三角形, ∴∠DFE=60°.∴可得点N在EF上, ∴MF=EN. (3)画出图形(连出线段NE), MF与EN相等的结论仍然成立(或MF=NE成立). ★★10、(2010丹东)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为 (-8,0),点N的坐标为(-6,-4). (1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C); (2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出 此时m的值,并指出相等的邻边;若不存在,说明理由. 第26题图 O M N H A C E F D B ↑ → -8 (-6,-4) x y 解:(1) 利用中心对称性质,画出梯形OABC. ∵A,B,C三点与M,N,H分别关于点O中心对称, ∴A(0,4),B(6,4),C(8,0) (2)设过A,B,C三点的抛物线关系式为, ∵抛物线过点A(0,4),∴.则抛物线关系式为. 将B(6,4), C(8,0)两点坐标代入关系式,得 ,解得,所求抛物线关系式为:. (3)∵OA=4,OC=8,∴AF=4-m,OE=8-m. ∴ OA(AB+OC)AF·AGOE·OFCE·OA ( 0<<4) ∵. ∴当时,S的取最小值. 又∵0<m<4,∴不存在m值,使S的取得最小值. (4)当时,GB=GF,当时,BE=BG.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010 中考 数学 压轴 精选
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文