基于Fisherfaces的人脸识别算法实现毕业设计.doc
《基于Fisherfaces的人脸识别算法实现毕业设计.doc》由会员分享,可在线阅读,更多相关《基于Fisherfaces的人脸识别算法实现毕业设计.doc(28页珍藏版)》请在咨信网上搜索。
1、摘 要 人脸识别由于在身份认证、视觉监控以及人机接口等方面有着广泛的应用前景,从而成为目前模式识别和计算机视觉领域的一大研究热点。人脸识别涵盖了图像处理、模式识别、神经网络、计算机视觉、生理学以及数学等诸多学科,是一项非常综合的技术,它的应用正随着社会的进步与日俱增。人脸识别是生物测定学研究的内容之一, 是模式识别领域中的一个前沿课题。目前, 人脸识别逐渐成为模式识别和人工智能领域的一个研究热点。但由于复杂的光照条件下, 多变的人脸表情以及姿态的变化都增加了人脸自动识别的难度, 尽管人脸识别已经取得了较大的发展, 但离实际应用仍有较大差距。作为一种经典的模式识别问题, 计算机人脸识别的成功离不
2、开合理的特征提取和有效的分类器设计策略。在人脸识别及其他模式识别领域中,特征提取是一个非常有意义的研究方向。到目前为止,有很多相应的算法应用到人脸识别领域,其中比较著名是基于Fisher线性鉴别准则的Fisherface方法、LDA算法PCA算法。本文基于MATLAB的人脸识别环境,设计并实现了一个基于Fisherfaces的人脸识别算法实现系统,展示如何通过利用MATLAB 的工具函数和多种算法实现对人脸识别的各种处理。论述了利用设计的系统实现人脸识别进行打开、操作、保存、另存、打印、退出等功能操作。关键字人脸识别;Fisherface;MATLABAbstractFace recognit
3、ion has a wide range of applications due in authentication, visual surveillance , and human-machine interface, thus become a major research focus of pattern recognition and computer vision . Face covers image processing, pattern recognition, neural networks, computer vision, physiology and mathemati
4、cs , and many other disciplines, is a very comprehensive technology, its applications are increasing with the progress of society . Face recognition is one of the elements of biometrics research in the field of pattern recognition is a leading subject . Currently , face recognition is becoming a hot
5、 topic in the field of pattern recognition and artificial intelligence . However, due to the complex lighting conditions , facial expressions and posture change changing face have increased the difficulty of automatic face recognition , face recognition despite great progress has been made , but the
6、re is still a large gap from practical application . As a classic pattern recognition problems , inseparable from the success of a reasonable feature extraction and face recognition classifier design effective strategies .In face recognition and other pattern recognition , the feature extraction is
7、a very interesting research direction . So far , there are many appropriate algorithm is applied to face recognition , which is based on the more famous Fisher linear discriminant criterion Fisherface method , LDA algorithm PCA algorithm. Face Recognition Based on MATLAB environment , design and imp
8、lement a face recognition algorithm based on the realization of the system Fisherfaces demonstrate how various treatments for face recognition function through tools and a variety of algorithms using MATLAB s . Discusses the use of face recognition systems designed be open , operate , save, save , p
9、rint, exit and other functions.KeywordFace recognition ; Fisherface; MATLAB目录第一章 绪论11.1 人脸识别的历史和发展11.2 MATLAB的功能介绍4第二章 人脸识别算法的介绍52.1 人脸识别算法分类52.2几种常用的算法52.2.1基于几何特征的人脸识别算法52.2.2基于特征子空间(特征脸)算法5第三章PCA算法63.1 PCA降维63.1.1提取训练集图像T的平均值(平均人脸)63.1.2计算构造矩阵L73.1.3计算出协方差矩阵C并计算其特征向量(主成分脸)83.2 PCA重构图像8第四章 Fisherf
10、aces算法94.1 Fisher线性判别分析的基本原理94.2 LDA算法人脸识别系统的应用134.2.1 导入系统训练样本集和测试样本集134.2.2 Fisher最优判别向量的计算134.2.3 将测试样本与各类训练样本投影到特征子空间154.3 分类识别164.4 实验结果分析16第五章实验部分185.1提取训练值185.2实验结果21致谢24参考文献:251第一章 绪论1.1 人脸识别的历史和发展人脸识别的研究历史比较悠久。高尔顿(Galton)早在1888年和1910年就分别在Nature杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可
11、能涉及到人脸的自动识别问题。最早的AFR1的研究论文见于1965年陈(Chan)和布莱索(Bledsoe)在PanoramicResearchInc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。尤其是1990年以来,人脸识别更得到了长足的发展。几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1
12、所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍。第一阶段(1964年1990年)这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeaturebased)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon以及金出武雄
13、(Kanade Takeo)等。金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。第二阶段(1991年1997年)这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Ide
14、ntix)的FaceIt系统。美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量方法一道成为人脸识别的性能测试基准算法。这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波奥Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基
15、于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。贝尔胡米尔(Belhumeur)等提出Fisherface人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(PrincipalComponentAnalysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminantAnalysis,LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别
16、方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别方法以及近期的一些基于核学习的改进策略。麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别.脸识别中的另一种重要方法弹性图匹配(ElasticGraphMatching,EGM)也是在这一阶段提
17、出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征Gabor变换12特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该方法的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该方法的扩展。局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。
18、LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已商业化为著名的FaceIt系统,因此后期没有发表新的学术进展。由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于1994年,1995年1996
19、年组织了3次人脸识别评测,几种最知名的人脸识别算法都参加了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。柔性模型(FlexibleModels)包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为2D形状和纹理两个分离的部分,分别用统计的方法进行建模(PCA),然然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔
20、性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。从技术方案上看,2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。第三阶段(1998年现在)FERET96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的商业系统进一步发展
21、。为此,美国军方在FERET测试的基础上分别于2000年和2002年组织了两次商业系统评测。基奥盖蒂斯(Georghiades)等人提出的基于光照锥(IlluminationCones)模型的多姿态、多光照条件人脸识别方法是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉方法进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的7幅同一视点图像恢复物体的3D形状和表面点的表面反射系数(传统光度立体视觉能够根据给的3幅已知光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 Fisherfaces 识别 算法 实现 毕业设计
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。