东北大学理学院《432统计学》[专业硕士]历年考研真题汇编(含部分答案).pdf
《东北大学理学院《432统计学》[专业硕士]历年考研真题汇编(含部分答案).pdf》由会员分享,可在线阅读,更多相关《东北大学理学院《432统计学》[专业硕士]历年考研真题汇编(含部分答案).pdf(128页珍藏版)》请在咨信网上搜索。
目录第一部分历年考研真题汇编2015年东北大学理学院432统计学专业硕士考研真题(回忆版)2015年东北大学理学院432统计学专业硕士考研真题(回忆版)(含部分答案)第二部分兄弟院校真题及详解2015年中山大学数学与计算科学学院432统计学专业硕士考研真题2015年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解2014年中山大学数学与计算科学学院432统计学专业硕士考研真题2014年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解自由度v 1 2 3 4 5 6 2.5%分位数 0.001 0.051 0.216 0.484 0.831 1.237 5%分位数 0.004 0.103 0.352 0.711 1.145 1.635 50%分位数 0.455 1.3862.366 3.357 4.351 5.348 95%分位数 3.841 5.991 7.815 9.488 11.07012.592 97.5%分位数 5.024 7.378 9.348 11.142 12.833 14.499 2013年中山大学数学与计算科学学院432统计学专业硕士考研真题2013年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解2012年中山大学数学与计算科学学院432统计学专业硕士考研真题2012年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解第一部分历年考研真题汇编2015年东北大学理学院432统计学专业硕士考研真题(回忆版)2015年东北大学432统计学考试经验楼主今年考的东大,本来想着考完就写的,你们还是原谅楼主懒吧,就一直拖到了今天,感谢一下以前对我提供帮助的人还有各种贴吧论坛平台等等,感谢CCTV。现在觉得我也应该回报点什么,知道考研的不容易,也不知道现在也写出来有多少同学能看到,总之学长只能帮你们到这里了!不多废话,直接上干货。楼主是2015年考的东北大学应用统计专业,大概貌似分数是这样子的:政治66,英语67,数三121,专业课121,总分375。政治英语什么的我就不多说了,我考的也不是很高,你们也听过看过比我牛逼的,就简单的说说数学一定要拿高分,不要小看数学,数学考得高,考上的概率会增加,但是数学考得100分都没有,我觉得上的概率可能会很小,所以大家还是要注重数学的复习,尤其是基础的知识点和考点。至于学校的选择上面我相信大家心里都有数了吧,还没有确定的要抓紧时间了,预报名都已经开始了,其他的我就不多说了。切入正题!接下来我说一下专业课,考东大的应用统计有点悲催。为什么呢?因为我们这个专业的真题是很难搞到的,而且给的参考书也是极其的难,我是没看懂过。是不是有点迷茫?不要急,慢慢来,首先我说一下具体情况吧,东大的应用统计专业不是很好,因为大部分老师都是搞控制论的,所以没有专门的统计老师,专业课题也是出的偏概率论与数理统计的多,而统计学的知识涉及的不是很多。所以大家要是奔着985的名声呢可以考虑一下东大。第二,是今年考研的具体情况,今年是总共招20个,其中推免了7个,学校复试线出来后是有20个,但那只是学校线330,学院线好像是360,所以进复试的是17个人。其中有3个人是400+的,大部分都是370+,具体分数的情况大家可以去考研论坛看看东大每年的大榜,里面都有具体的分数,好了,情况就是这个样子的。第三,东大官方给出的专业课参考书是中山大学的概率论与数理统计,个人感觉看不懂,我用的是本科上课用的书,贾俊平的统计学(中国人民大学出版社)还有的是茆诗松的概率论与数理统计(浅黄皮的),好好把这两本书看几遍,对付考试足矣,主要还是以概率论为主,但也不要看的太深,具体你们自己把握。我觉得贾俊平的统计学讲得浅显易懂,挺好用的,多看几遍,把里面的有可能考的概念性名词抄在笔记本上进行背诵,因为真题里有名词解释的题目。多注重基础知识,再加之以一定的练习辅导就没有问题了,我当时还买了一本圣才考研网的一本贾俊平配套的练习题(淘宝,当当什么的都有卖的),挺不错的,当练习题做了做。当然最重要的还是数学,数学,数学,重要的事情说三遍。第四,专业课真题,这个确实是弄不着,我当时是收集了其他学校的最近几年的考研真题练手用,我知道中山大学的历年真题是免费提供的,大家可以下下来练练,那是比较难的,看看自己哪有不足。不过大家不用担心,楼主由于今年考试的时候做的比较快,空下来的时间就把真题的大概抄了下来,供大家学习,不过后果就是楼主的专业课考的是最低的,为了你们也是蛮拼的。15年考的还算简单,有选择,但14年就没有选择,都是论述。据说16年好像是没有选择的,具体你们可以看一下东大的官网,考纲应该是下来了。如果题简单的话大家不要轻视了,还是应该多检查几遍,论述题还是尽量多答点。难得话也不要手忙脚乱的,静下心来冷静思考,相信自己的复习能圆你的考研梦,加油!最后,楼主还是希望大家在最后的三个月时间里认真的准备复习,相信自己,最重要的是一定要有信心,祝大家考试顺利,我在东大等着你们。我知道的都告诉大家了,原谅楼主现在才写这个帖子,我也希望能对你们有所帮助,也希望你们考完了能帮助下一届的学弟学妹们。2015年东北大学理学院432统计学专业硕士考研真题(回忆版)(含部分答案)二、简答题1已知XN(3,4)且Y=2X+3,求E(Y)与D(Y)。答:因为则3,4。则由期望和方差的性质可得:2请叙述估计量的无偏性、有效性的概念,并说明意义。答:无偏性和有效性是评价估计量好坏的两个重要标准,二者的概念和意义分别如下:(1)无偏性 概念无偏性是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为,所选择的估计量为,如果E(,则称 为的无偏估计量。无偏性的含义是,估计量 是一随机变量,对于样本的每一次实现,由估计量算出的估计值有时可能偏高,有时可能偏低,但这些估计值平均起来等于总体参数的真值。在平均意义下,无偏性表示没有系统误差。意义一个好的估计量首先必须是无偏估计量。(2)有效性 概念有效性是指估计量与总体参数的离散程度。离散程度是用方差度量的,因此对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效。假定有两个用于估计总体参数的无偏估计量,分别用和表示,它们的抽样分布的方差分别用D()和D()表示,如果的方差小于的方差,即D(),A3=正、反面各出现一次),A4=正面出现两次),则()AA1,A2,A3两两独立BA1,A2,A3相互独立CA2,A3,A4两两独立DA2,A3,A4相互独立【解析】由题意,,所以,,所以,两两独立。而,B【答案】由题意,【解析】A【答案】,都不满足事件相互独立的条件,故选择A项。4随机变量X有密度则常数c的取值为()A2BC2Dl【解析】密度函数需满足:,由题意得,解得,。5设z在0,1上服从均匀分布,随机变量X,Y,满足方程组则X和Y各自落在0,1中的概率为()A13和l2B12和12C13和0D13和23D【答案】【解析】由题意,解出X,Y的表示式为:,由于Z在上服从均匀分布,所以X服从上的均匀分布,Y服从上的均匀分布,所以X,Y各自落在中的概率分别为。6设X和Y都服从标准正态分布,则()AX+Y服从正态分布BX2+Y2服从卡方分布CX2和Y2都服从卡方分布DX2Y2服从F分布【解析】A项,正态分布具有可加性的前提是随机变量X,Y相互独立,题目中未说明X,Y相互独立,所以X+Y不一定服从正态分布;B项,卡方分布要求X,Y相互独立且同分布于标准正态分布,题目中未说明X,Y相互独立;D项,F分布要求是相互独立的卡方分布,题目中未说明X,Y相互独立。7当随机向量(X,y)服从单位圆面D=(x,Y):x2+y2l上的均匀分布,则:Y的边际分布F(y)与y关于x的条件分布G(y|x),则()AF(y)不服从均匀分布,G(y|x)服从均匀分布BF(y)服从均匀分布,G(y|x)不服从均匀分布C【答案】C【答案】C二者均服从均匀分布D二者均不服从均匀分布【解析】区域D是圆面,面积为,所以此随机向量的密度函数为,x,y。所以Y的边际密度为:。Y关于X的条件密度为:,所以二者均服从均匀分布。8设随机变量Xt(n),n1,Y=1X2,则()AY2(n)BY2(n1)CYF(1,n)DYF(n,1)【解析】由于随机变量X服从自由度为n的t分布,设其中,随机变量服从N(0,1),X2服从,则,Y服从F(n,1)。C【答案】D【答案】9设为来自总体期望为,总体方差为2的样本,为样本均值,则()【解析】由题意,由于样本X1,X2,Xn独立同分布,所以有,10设其中c为某一正数,则()所以得到,C【答案】B【答案】由题意,【解析】,即,所以,。11设EX=0,Var(X)=1,EY=1,Var(Y)=4,且相关系数xy=1,则()AP(2XY+1=0)=1BP(2Xy1=0)=1CP(2X+Y+1=0)=1DP(2X+y1=0)=1【解析】由得知,X和Y有严格的线性函数关系,且为正相关关系。设Y=aX+b,a0,则,整理得,所以P(2X-Y+1=0)=1。12在假设检验中,第一类错误是指()A当原假设为真时,接受原假设B当原假设为真时,拒绝原假设C当备选假设为真时,接受原假设D当备选假设为真时,拒绝原假设A【答案】B【答案】假设检验中所犯的错误有两种类型,第一类错误是原假设为真而拒绝原假设,犯这种错误的概率用表示,所以也称错误或弃真【解析】13设X1,X2,Xn为来自二项分布B(m,p)的样本,分别为样本均值和样本方差,若的无偏估计量,则()Ac=2Bc=1Cc=1Dc=2【解析】由无偏估计的概念可得,而分别是总体均值和方差的无偏估计,所以,所以,c=-1。14设X1,X2,Xn为来自正态分布N(,2)的样本,其中为己知,为样本均值,则2的最大似然估计为()错误;第二类错误是原假设为伪而不拒绝原假设,犯这种错误的概率用表示,所以也称错误或取伪错误。B【答案】C【答案】似然函数为:【解析】;对数似然函数为:;对对数似然函数求导得:;所以,的极大似然估计为:。15设总体X的概率密度函数为为来自总体X的样本,则的矩估计量为()【解析】由题意得:,令B【答案】得到 的矩估计量为:。16设为来自正态分布N(,2)的样本,其中2为己知,为样本均值。考虑如下假设检验:标准正态分布的95分位数为1.645,在显著性水平为0.05下,拒绝H0等价于()A单侧区间不包含0B单侧区间包含0C单侧区间不包含0D单侧区间包含0【解析】由题意,这是一个正态总体均值的右单侧检验,采用Z统计量,拒绝域的形式为:,即,所以当时,拒绝H0,选择D项。17设X1,X2,Xn独立同分布,具有期望则()的相合估计量D【答案】的最大似然估计量的无偏估计量的充分统计量。所以是的相合估计量。18设X1,X2都服从参数为l的指数分布,Y服从参数为2的指数分布,f(y)=2e-2y,0yz)=1-P(Xz,Yz),由于X,Y相互独立,所以P(Xz,Yz)=P(Xz)P(Yz),所以,即Z服从参数为的指数分布。(2)随机变量与 相互独立,故的联合分布密度为:。;同理,。Z服从参数为的指数分布,Z的分布函数。因此,Z与W相互独立。(3)W服从参数为的0-1分布,即,W的分布函数为。由于Z与W相互独立,所以Z与W的联合密度函数为:求的极大似然估计如下:建立似然函数:求出对数似然函数:对数似然函数分别关于,求偏导:令偏导等于0,得到极大似然估计量:;。(4),。随机变量服从参数为的指数分布,即参数为的伽马分布。由伽马分布的可加性,。令,则其密度函数为。的期望。因此,是 的无偏估计。三、(共20分)令为总体伯努利分布e(1,p)的样本,为统计量,为前n个样本之和大于第n+1个样本的概率,从而h(p)为p的函数。(1)(6分)证明:是参数p的充分统计量。(2)(6分)证明是h(p)的无偏估计量。(3)(8分)寻找h(p)的最小方差无偏估计(需要写出具体形式)。解:(1)依题意有,随机变量的分布为。样本的联合分布为,其中。将统计量代入得,。根据因子分解定理,是参数的充分统计量。(2)证明:统计量的期望,即。因此,是的无偏估计量。(3)由题意,由伯努利分布的性质,。是的完备充分统计量,是的一个无偏估计,由定理知,将对求条件期望,则是的最小方差无偏估计。在,的条件下求条件期望:。其中,当时,;当时,;当时,;当时,。故的最小方差无偏估计为。四、(共16分)令X1,X2,X3,X4,X5为总体伯努利分布B(1,p)的样本。考虑如下假设检验:(1)(10分)寻找此假设检验的最优检验(显著水平为0.05)。(2)(6分)计算上述检验的第一类与第二类错误概率大小。解:(1)根据Neyman-Pearson定理,应通过似然比检验得到最优检验。似然函数为。当和时,对应的似然函数分别为,。因此,似然比为。当时,拒绝,等价于时,拒绝,其中。给定显著性水平,使。当为真时,服从二项分布,由于是离散分布,所以不能求出一个 值满足上式,此时应选择满足的最大 作为临界点。,当时,。故最优检验的拒绝域为,即只有当全为0时才拒绝原假设。(2)犯第一类错误的概率,即原假设为真拒绝原假设的概率;犯第二类错误的概率,即原假设为假但接受原假设的概率。五、(共24分)假定A,B,C三种不同工艺铸造的零件强度X,Y,Z分别服从正态分布且X,Y,Z相互独立。为了解三种工艺铸造强度的差异,随机选取7,7,6个(共20个)分别用A,B,C三种工艺铸造的零件,测得其强度令(1)(8分)证明服从t分布(2)(6分)利用上述t分布求3的95置信区间。(3)(10分)若观测数据如下表所示,并分别计算得到三组样本均数与样本方差(见下表)。在=0.05的显著性水平下,检验A,B,C三种工艺铸造的零件强度有无差异。A,B,C三种工艺铸造的零件强度解:(1)证明:由正态分布的性质,;由卡方分布的可加性,;由t分布的定义,整理得。(2)由t分布的性质,整理得,即的95%置信区间为,其中。(3)构造假设检验:;。全部观测值的总均值:组间平方和:组内平方和:SSA的自由度为3-1=2;SSE的自由度为20-3=17。当为真时,检验统计量,本题中。代入数据计算得:。因此,拒绝原假设,即认为A、B、C三种零件的强度有显著差异附:t分布的95与97.5分位数F分布95与97.5分位数:2014年中山大学数学与计算科学学院432统计学专业硕士考研真题 2014年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解中山大学2014年攻读硕士学位研究生入学考试试题考试科目:432考试名称:统计学一、(每题3分,共60分)单项选择题1在公理化结构中,概率是针对时间定义的,可视为事件域上的一个集合函数。以下那一条不属于公理化结构中“概率”所应满足的条件()A非负性B不连续性C可列可加性D规范性2两个人轮流抛一个骰子,约定谁先抛出6谁获胜,则后抛者获胜的概率为()A1/2B5/12B【答案】概率的公理化定义中概率应满足以下条件:非负性,规范性,可列可加性。一般在连续性随机变量中,概率具有连续性。【解析】C6/11D5/11【解析】由于是轮流掷骰子,所以第一个人获胜的概率为,第二个人获胜的概率为,则有,解方程,得,则。3一个盒子有3个蓝弹子和两个红弹子,第二个盒子有两个蓝的和五个红的,随机从一个盒子中抽取一个弹子,发现它是蓝的,则该弹子来自第一个盒子的概率是()A3/10B3/5C21/31D10/314设A,B,C是任意事件,满足ABC,则()D【答案】C【答案】设事件A表示:抽取的是蓝弹子,事件B1表示:抽取的弹子来自第一个盒子,B2表示:抽取的弹子来自第二个盒子。所求即为P(B1|A)。根据贝叶斯公式得:【解析】AAC且BCBCAC或BCD5设A1,A2,Ak为任意事件,和分别为样本空间和空集。下列叙述不正确的是()A与任意事件Ai独立B与任意事件Ai独立C若A1,A2,Ak相互独立,则A1,A2,Ak两两独立D若A1,A2,Ak两两独立,则A1,A2,Ak相互独立【解析】一般,设是个事件,如果对于其中任意i个事件的积事件的概率,都等于各事件概率之积,则称事件相互独立。因此若事件相互独立,则其中任意两个事件必是独立的,即两两独立;但若事件两两独立不能得到所有事件相互独立。6设随机变量X服从参数为的泊松分布,则下列条件中导出参数=2的条件是()B【答案】,则,即。而,则。【解析】D【答案】AEX=1/2BVar(X)=1/4CPX=1=PX=2DPX=2=2PX=1【解析】AB两项,泊松分布的期望和方差均为参数,即若参数=2,应有EX=2,Var(X)=2。CD两项,泊松分布的概率分布函数为。,因此。7设随机变量XN(,2),则随的增大,概率PX()A单调增大B单调减小C保持不变D增减不定【解析】原分布服从正态分布,即XN(,2),则,即服从标准正态分布。PX=P1=P-1 1=,为一定值,与无关。C【答案】C【答案】8假设独立随机变量X和Y服从同一名称的概率分布(二者的分布参数未必相同),且X+Y也服从同一名称的概率分布,则X和Y都服从()A均匀分布B指数分布C正态分布D对数正态分布【解析】正态分布的可加性,设随机变量相互独立且均服从正态分布,则。9设X为一随机变量,其期望为EX,C为任意常数,则()ABCDC【答案】B【答案】E(X-C)2=E(X-EX+EX-C)2=E(X-EX)2+2(EX-C)E(X-EX)+(EX-C)2=E(X-EX)2+0+(EX-C)2E(X-EX)2【解析】10设XB(100,0.5),设(X)为N(0,1)的分布函数,则P(X30)近似于()A(4)B(4)C(4/5)D(4/5)【解析】若,当 足够大,且不太靠近0或1时,二项分布逼近正态分布,的均值为,方差为。该题中,则,P(X30)近似于P()=1-P()=1-=。11设是取自N(0,1)的样本,且n2,为样本均值,则下列结论正确的是()ABCDB【答案】B【答案】12从同一正态总体中进行抽样,每一份样本的样本量都为16,分别抽1000与4000次,从而分别得到1000个样本均数与4000个样本均数,则()A前1000个样本均数的变异(方差)小,大约是后者的1/2B前1000个样本均数的变异大,大约是后者的2倍C前1000个样本均数的变异大,大约是后者的4倍D前1000个样本均数的变异与后者差不多,都大约为原正态总体的标准差的1/4【解析】样本均数的标准差为,它反映了样本均数之间的变异程度。每一份样本的样本量都为16,因此无论抽样次数为多少,样本均数的变异都差不多,大约为。13设n个随机变量X1,X2,Xn独立分布,Var(X1)=2+,与S2分别为样本均值与样本方差,则()AS与 相互独立BS是的相合估计量B项,【解析】D【答案】CS是的最大似然估计量DS是的无偏估计量14关于最大似然估计量和无偏估计量的叙述,下列正确的是()A若T为参数的最大似然估计量,则g(T)为g()的最大似然估计量B若T为参数的无偏估计量,则g(T)为g()的无偏估计量C最大似然估计量和无偏估计量总是唯一的D以上皆非【解析】A项,由最大似然估计的不变性,若 是 的最大似然估计,g()是 的连续函数,则g()的最大似然估计为。B项,无偏估计不具有不变性。C项,无偏估计量不是唯一的。15设X1,X2,Xn正态总体XN(,2)的样本,则2+2的矩法估计量为()AA【答案】BCD三项,S2为2的无偏估计量,同时也为2的最优估计量。【解析】D【答案】BCD【解析】,为总体矩,于是2+2的矩法估计量为16设X1,X2,Xn总体X的样本,则总体均值的相合估计量为()AXnBCmaxX1,X2,XnDminX1,X2,Xn【解析】若=为参数 的估计量,若对于任意,当时,依概率收敛于,则称为 的相合估计量。由大数C【答案】B【答案】定律知,有,所以是的相合估计量。17假设其他条件不变,把从5%降低到2.5%则总体均值的置信程度1的置信空间的宽度将()A增加B不变C降低D可能增加,也可能降低【解析】总体均值的置信程度1的置信区间为或,当其他条件不变,降低时,或增加,因而置信空间的宽度将增加。18关于假设检验第二类错误概率的叙述,下列正确的是()AH0为真,经检验拒绝H0的概率BH0为真,经检验接受H0的概率CH0为假,经检验拒绝H0的概率DH0为假,经检验接受H0的概率A【答案】D【答案】19甲、乙两人服从标准正态分布的随机数发生器分别产出30个随机数字作为样本,求得本均数,样本方差S21,S22,则()A,S21=S22B作两样本t检验,必然接受零假设,得出两总体均值无差别的结论C由甲、乙两样本求出的两总体方差比值的95%置信区间,必然包含0D分别由甲、乙两样本求出的各自总体均数的95%置信区间,可能没有交集20一名研究者从甲、乙两地区分别随机抽取了100名成年人,测得他们的平均身高m1与m2。欲检验H0:1=2,经检验水平=0.05的假设检验,得到p值小于。这项结果表明()A如果1=2,则从抽样中观察到样本均数m1与m2这样的差异以及更极端的差异的可能性小于0.05第一类错误是原假设H0为真却被拒绝了,犯这种错误的概率用表示,所以也称错误或弃真错误;第二类错误是原假设H0为伪却没有拒绝,犯这种错误的概率用表示,所以也称错误或取伪错误。【解析】D【答案】A项,由于样本是随机的,抽出不同的样本得到的均值与方差往往是不同的。B项,同样由于样本的随机性,根据样本得到的估计值很可能不同于总体真值,因而两样本的t检验不一定接受零假设。C项,若两总体方差均不为0,则其比值的95%置信区间不可能包含0。【解析】B证明了两个地区的身高的总均数1与2有差异C有95%的可能性1与2有差异D有5%的可能性1与2有差异二、(共90分)计算分析题1(共13分)设正态分布随机变量XN(12,9)与YN(10,16)相互独立。(1)(7分)分别求U=2X+Y与V=XY的分布,并说明U与V是否独立;(2)(6分)求概率P12X+Y32。(用标准正态分布函数(X)表示)解:(1),且X与Y相互独立,根据正态分布的性质知相互独立的服从正态分布的随机变量的线性组合仍服从正态分布,所以,,因此A【答案】p值为当原假设为真时所得到的样本观察结果或更极端结果出现的概率。当给定了显著性水平,则在双侧检验中,pD(X)D(Y)的性质。所以比以及更有效。(3),由于服从正态分布XN(0,2),所以,因此,即,于是有,据此可推导出2在95%置信水平下的置信区间为:。3(共21分)设X1,X2,X3为来自总体X的随机样本,X的概率密度函数为其中0为未知参数。令。(1)(7分)求的矩估计和最大似然估计(2)(7分)求Yi的分布(3)(7分)给定检验水平=0.05,以为检验统计量,对假设问题构建假设检验。解:(1)矩法估计,则,解得 的矩估计为。最大似然估计构造似然函数取对数建立似然方程求解得最大似然估计为。(2),当时,。即 的分布为。由此可见Y服从参数为 的指数分布,即。(3)由题(2)知:,故故的分布密度函数为 Gamma分布为指数型分布族,由分布密度函数知:为总体X参数 单调不增似然比统计量。拒绝域 其中为的下 分位数。4(共21分)记X1,X2为来自均匀分布的样本。假设。现有两个检验:检验:拒绝H0,若X10.95;检验:拒绝H0,若X1+X2C。(1)(7分)求检验的第一类错误概率与第二类错误概率;(2)(14分)若检验与检验的第一类错误概率相等,求C的值,并求出检验相应的第二类错误概率、解:(1)检验的拒绝域为W=X10.95,当为真时,;当不真时,。服从均匀分布,则的密度函数为该检验的第一类错误(即拒真错误)概率为。该检验的第二类错误(即取伪错误)概率为。(2)检验的拒绝域为W=X1+X2C,当为真时,X1+X2C。第一类错误(即拒真错误)概率为令上述概论等于,解得C=1.45。检验的第二类错误(即取伪错误)概率为=0.85。5(共14分)现有简单线性回归模型。记样本观测数据为。(1)(9分)求未知参数的最大似然估计;(2)(5分)写出1的95%置信区间。答:(1)假如模型的参数估计量为,在满足基本假设条件下,服从正态分布,因此 的概率函数为由于 相互独立,因此所有的样本观测值的联合概率,即似然函数为:将该似然函数最大化,即可求得模型参数的最大似然估计。由于似然函数的最大化和似然函数对数的最大化是等价的,因此,取对数似然函数如下:。对求最大值,等价于对求最小值,即,解得模型参数估计量为:。解似然方程:,得的最大似然估计为:。(2)因为,置信水平为95%,从 分布表中查得自由度为的临界值,而 值处在(-,)的概率是,即,即,则,于是的95%置信区间为(,)。附:1正态分布N(,2)的密度函数。2Gamma分布的密度函数。(1)=1时,即参数为1/的指数分布;=v/2,=2时,即为自由度v的x2分布x2(v)。(2)若,则。3.x2分布分位数。自由度v 1 2 3 4 5 6 2.5%分位数 0.001 0.051 0.2160.484 0.831 1.237 5%分位数 0.004 0.103 0.352 0.7111.145 1.635 50%分位数 0.455 1.386 2.366 3.3574.351 5.348 95%分位数 3.841 5.991 7.815 9.48811.070 12.592 97.5%分位数 5.024 7.378 9.34811.142 12.833 14.499 2013年中山大学数学与计算科学学院432统计学专业硕士考研真题2013年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解中山大学2013年攻读硕士学位研究生入学考试试题科目代码:432科目名称:统计学一、(每题3分,共60分)单项选择题1将一枚硬币独立地掷两次,引进事件:=掷第一次出现正面,=掷第二次出现正面,=正、反面各出现一次,=正面出现两次,则事件()。A相互独立;B相互独立;C两两独立;D两两独立。【解析】若、独立,则。若、为不可能事件,则=0,即不成立。而、均为不可能事件,故ABD三项都不正确。2一盒产品中有a只正品,b只次品,有放回地任取两次,第二次取到正品的概率为()。C【答案】ABCD【解析】由于是有放回地任取两次,则第二次取到正品与第一次是否取到正品是两个相互独立的事件,因此,第二次取到正品的概率为。3设两个相互独立的随机变量X与Y分别服从正态分布N(0,1)和N(1,1),则()。ABCD【解析】随机变量与 相互独立,则有,且,因此,即。D【答案】B【答案】4设二元随机变量(X,Y)服从二元正态分布。则随机变量与独立的充分必要条件是()。ABCD【解析】对于二元正态分布,随机变量与独立的充分必要条件是,即。5对于二项分布的资料符合下面哪种情况时,可借用正态分布处理,()。A样本量 足够大,以致与都较大时;B样本量 足够大,足够小时;C时;D接近1或0时。【解析】由二项分布的原理和渐进分布的理论可知,当 充分大时,的分布可用正态分布去逼近。B【答案】A【答案】6已知随机变量X,Y,有,=()。A3/7;B5/7;C1/7;D6/7【解析】。7设X为连续型随机变量,对任意常数与存在,则对任意0,必有()。ABCD8若,那么()。A为二元正态分布,且B为二元正态分布,不确定B【答案】B【答案】C未必是二元正态分布D【解析】若与 为相互独立的随机变量,则有为二元正态分布。9下面关于参数和统计量的说法,哪项是正确的?()A总体参数是随机变量;B样本统计量都是总体参数的无偏估计量;C对一个总体参数进行估计时,无偏估计量总是惟一的;D样本统计量是随机变量。【解析】由于样本是随机变量,而统计量是样本的函数,因此样本统计量是随机变量。10移动公司在对人们更换手机的频率的调查中发现,有40的人每半年更换一次新手机,20的人每1年更换一次,30的人每2年更换一次,10的人每3年更换一次,那么人们更换新手机时长的中位数为()年。A0.5B1C1.5C【答案】D【答案】D211当一组数据属于右偏分布(右边的尾部相对于与左边的尾部要长)时,则()。A平均数、中位数与众数是合而为一的;B众数在右边,平均数在左边;C众数的数值较大,而平均数的数值较小D众数在左边,平均数在右边。【解析】如果数据的分布是对称钟形分布,则有众数(Mo)、中位数(Me)和平均数()必定相等,即Mo=Me=;如果数据的分布是左偏钟形分布,则有 MeMo;如果数据的分布是右偏钟形分布,则有MoMe68厘米,为“远”)或“近”,则如何推断运动项目对纵跳成绩的影响?解:(1)设排球运动员的纵跳平均成绩为,体操运动员的纵跳平均成绩为,游泳运动员的纵跳平均成绩为。提出假设:,不全相等 计算检验统计量值。,其中,代入数据求得:厘米,厘米,厘米,厘米。则,。得。作出决策。根据给定的显著性水平,分子自由度和分母自由度。查分布表,找到相应的临界值。若,拒绝,表明之间的差异是显著的,也就是说运动项目对纵跳成绩的影响是显著的;若,不拒绝,没有证据表明之间有显著差异,即各运动项目对纵跳成绩的影响是不显著的。(2)可以用wilcoxon秩和检验。记“远”=1,“近”=0。算出每种运动项目的秩和,然后进行检验,带入W统计量,算出W的值,由给定的显著性水平,查表得到临界值,比较W与临界值的大小,若W大于临界值,则拒绝原假设,认为运动项目对纵跳成绩有显著性影响,否则不拒绝原假设。5(共16分)在一元线性回归模型下,假设,根据 次独立抽样得到的样本数据,(1)(8分)如何求取和的最小二乘估计和;(2)(8分)如何在显著性水平下,进行假设检验。解:(1)根据最小二乘法使最小。令,在给定了样本数据后,是和 的函数,且最小值总是存在。根据微积分的极值定理,对求相应于和 的偏导数,并令其等于0,便可求出和,即解上述方程组得(2)线性关系检验的具体步骤如下:第1步:提出假设。第2步:计算检验统计量。,其中,。第3步:作出决策。在显著性水平下,根据分子自由度和分母自由度查分布表,找到相应的临界值。若,拒绝,表明两个变量之间的线性关系是显著的;若,不拒绝,没有证据表明两个变量之间的线性关系显著。2012年中山大学数学与计算科学学院432统计学专业硕士考研真题2012年中山大学数学与计算科学学院432统计学专业硕士考研真题及详解一、单项选择题(20小题,每小题3分,共60分,在每小题给出的4个选择项中,只有一个符合题目要求,请将所选正确答案对英的字母写在答题纸上并标明题号)1设两事件A与B独立,其概率分别为0.5与0.6,则P(A+B)=()。A0.6B0.7C0.8D0.9【解析】两事件A与B独立,故,。2设事件C发生时事件D发生的条件概率P(D|C)=0.4,若P(C)=0.5,P(D)=0.4,则P(C|D)=()。A0.4B0.5C0.6C【答案】D0.7【解析】3.设A,B,C都是事件,通过事件运算得到A,B,C,中某些事件的交及并的表达式,表示()。A事件A,B,C中至少有一个发生B事件A,B,C中至少有两个发生C事件A,B,C中至少有一个不发生D事件A,B,C中至少有两个不发生【解析】事件A,B,C中至少有一个发生的表达式为:;事件A,B,C中至少有两个发生的表达式为:;事件A,B,C中至少有两个不发生的表达式为:;事件A,B,C中至少有一个不发生的表达式为:。也可以简单理解:即“三个都发生的对立”是“至少有一个不发生”。4同时投掷2个骰子,以A表示事件“掷出的2个面的点数之和是6”,以B表示事件“掷出的2个面的点数之和是7”,则()。A事件A,B独立B事件A,B概率相等CP(A)P(B)B【答案】C【答案】DP(A)0时b0时b0Cr=1时b=0Dr=1时b=1【解析】r0说明y与x呈正线性相关关系,b表示的是直线的斜率,所以b0。当时,的取值完全依赖于,两者之间即为函数关系,此时b的取值不确定。12在回归变量Y关于预测变量X的简单线性回归中,以x为横坐标y为纵坐标绘制散点图;那么,最小二乘法确定回归直线满足以下哪一条?()A.各点到该直线的距离之和最小B.各点到该直线的距离的平方和最小C.各点到该直线的纵向距离之和最小D.各点到该直线的纵向距离的平方和最小B【答案】D【答案】最小二乘法也称为最小平方法,它是用最小化垂直方向的离差平方和来估计参数的方法,故选D项。【解析】13以下哪一种情形涉及定性数据的收集?()A质量控制工程师测量电灯灯泡的寿命B社会学家通过抽样调查来估计广州市市民的平均年收入C.运动器材厂家在区分各大俱乐部棒球选手是左撇子还是右撇子时作的调查D婚礼策划公司通过抽样调查来估计上海市市民举办婚礼的平均开销14关于方差分析,以下说法哪一项更合理?()A方差分析的目的是分析各组总体方差是否有显著差异B方差分析的目的是分析各组总体标准差是否有显著差异C方差分析的目的是分析各组总体均值是否有显著差异D方差分析的目的是分析各组总体中位数是否有显著差异C【答案】定性数据包括分类数据和顺序数据,是一组表示事物性质、规定事物类别的文字表述型数据,不能将其量化,只能将其定性,因而也可称为品质数据;数值型数据是直接使用自然数或度量衡单位进行计量的具体的数值。因此也可称为定量数据或数量数据。【解析】C【答案】表面上看,方差分析是检验多个总体均值是否相等的统计方法,但本质上它所研究的是变量之间的关系。方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。【解析】15考虑总体均值的95.44置信区间,已知总体服从正态分布且标准差为10;要使得到的置信区间的半径不超过1,需要的最小样本容量为()。A100B400C900D1600【解析】置信区间半径=,解得。16以下哪一项不是估计量的优良性标准?()A无偏性B充分性C有效性D相合性B【答案】B【答案】无偏性是指估计量抽样分布的数学期望等于被估计的总体参数;有效性是指对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效;一致性,又称为相合性,是指随着样本量的增大,点估计量的值越来越接近被估总体的参数【解析】17关于随机变量序列依分布收敛、依概率收敛与以概率1收敛,以下论断中哪一项成立?()A“依分布收敛”蕴含“依概率收敛”B“依分布收敛”蕴含“以概率1收敛”C“依概率收敛”蕴含“依分布收敛”D“以概率1收敛”蕴含“依概率收敛”18以下关于估计量的论断中,哪一项成立?()A极大似然估计量一定是无偏估计量B极大似然估计量一定是相合估计量C有效估计量一定是最小方差无偏估计量D相合估计量一定是最小方差无偏估计量D【答案】“以概率1收敛”可以理解为随机变量序列在任意样本点几乎处处收敛,蕴含“依概率收敛”。如果一个随机变量序列依概率收敛到某一个随机变量,则它们也一定依分布收敛到这个随机变量。反过来则不然:只有当一个随机变量序列依分布收敛到一个常数的时候,才能够推出它们也依概率收敛到这个常数。【解析】C【答案】有效性是指对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效【解析】19单因素方差分析中,以下哪种情形宜考虑非参数Kruskal-Wallis检验?()A.各组总体方差不等B.各组样本容量不等C.各组总体服从正态分布D.各组总体不服从正态分布20对于100名学生某一门课程的成绩,若想得到四分之一分位数、中位数与四分之三分位数,以下哪种描述统计的办法更有效?()A直方图B茎叶图C饼图D点图D【答案】Kruskal-Wallis检验是以确定k组样本是否来自同一总体为检验目的的检验,其基本思想是:首先,将多组样本数据混合并按升序排序,求出各变量值的秩;然后,考察各组秩的均值是否存在显著差异。容易理解:如果各组秩的均值不存在显著差异,则是多组数据充分混合、数值相差不大的结果,可以认为多个总体的分布无显著差异;反之,如果各组秩的均值存在显著差异,则是多组数据无法混合、某些组的数值普遍偏大、另一些组的数值普遍偏小的结果,可以认为多个总体的分布有显著差异。【解析】二、计算和证明题(本题包括1-5题共5个小题,前两题每题各15分,后三题每题各- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研历年真题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【雁**】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【雁**】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【雁**】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【雁**】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文