2017中考数学几何压轴题辅助线专题复习.doc
《2017中考数学几何压轴题辅助线专题复习.doc》由会员分享,可在线阅读,更多相关《2017中考数学几何压轴题辅助线专题复习.doc(12页珍藏版)》请在咨信网上搜索。
中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为 . 精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1) 若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少? (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少? . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系; (3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少? 精选8、等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E; (1)如图(1),若A(0,1),B(2,0),求C点的坐标; (2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE (3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由. 精选l1 l2 l3 l4 h3 h2 h1 第题图 9.如图,正方形的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、. (1) 求证:; (2)设正方形的面积为,求证:; (3)若,当变化时,说明正方形的面积 随的变化情况. 参考答案 精选1 解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4, ∴AC===5, ∵DE垂直平分AC,垂足为O, ∴OA=AC=,∠AOD=∠B=90°, ∵AD∥BC, ∴∠A=∠C, ∴△AOD∽△CBA, ∴=,即=,解得AD=. 故答案为:. G 精选2 证明:在AB上截取AG,使AG=AF, 易证△ADF≌△ADG(SAS). ∴DF=DG.∵∠C=60°, AD,BD是角平分线,易证∠ADB=120°. ∴∠ADF=∠ADG=∠BDG=∠BDE=60°. 易证△BDE≌△BDG(ASA). ∴DE=DG=DF. 精选3、 解:(1)连接OC. ∵PC为⊙O的切线, ∴PC⊥OC. ∴∠PCO=90度. ∵∠ACP=120° ∴∠ACO=30° ∵OC=OA, ∴∠A=∠ACO=30度. ∴∠BOC=60° ∵OC=4 ∴ ∴S阴影=S△OPC﹣S扇形BOC=; (2)∠CMP的大小不变,∠CMP=45° 由(1)知∠BOC+∠OPC=90° ∵PM平分∠APC ∴∠APM=∠APC ∵∠A=∠BOC ∴∠PMC=∠A+∠APM=(∠BOC+∠OPC)=45°. 精选4、 解:(1)在Rt△ABE中,.(1分) 过点O作OD⊥BC于点D,则OD∥AC, ∴△ODB∽△ACB,∴,∴,∴, ∴点O到BC的距离为.(3分) (2)证明:过点O作OE⊥BC于点E,OF⊥AC于点F, ∵△OEB∽△ACB,∴∴,∴. ∴直线BC与⊙O相切.(5分) 此时,四边形OECF为矩形, ∴AF=AC﹣FC=3﹣=, ∵OF⊥AC,∴AP=2AF=.(7分) (3);(9分) (4)过点O作OG⊥AC于点G,OH⊥BC于点H, 则四边形OGCH是矩形,且AP=2AG, 又∵CO平分∠ACB,∴OG=OH,∴矩形OGCH是正方形.(10分) 设正方形OGCH的边长为x,则AG=3﹣x, ∵OG∥BC,∵△AOG∽△ABC, ∴,∴, ∴,∴,∴AP=2AG=.(12分) 精选5、 证法1:(截长)如图,截DF=DB,易证△DBF为等边三角,然后证△BDC≌△BFA即可; 证法2:(截长)如图,截DF=DC,易证△DCF为等边三角,然后证△BDC≌△AFC即可; 证法3:(补短)如图,延长BD至F,使DF=DC,此时BD+DC=BD+DF=BF, 易证△DCF为等边△,再证△BCF≌△ACD即可. 证法4:(四点共圆)两组对角分别互补的四边形四个顶点共圆. 设AB=AC=BC=a,根据(圆内接四边形)托勒密定理: CD·a+BD·a=AD·a,得证. 精选6、 解:(1)如图1,①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°. 由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO.∠APO=∠B. ∴∠APO=90°. ∴∠APD=90°﹣∠CPO=∠POC. ∵∠D=∠C,∠APD=∠POC. ∴△OCP∽△PDA. ②∵△OCP与△PDA的面积比为1:4, ∴====. ∴PD=2OC,PA=2OP,DA=2CP. ∵AD=8,∴CP=4,BC=8. 设OP=x,则OB=x,CO=8﹣x. 在Rt△PCO中, ∵∠C=90°,CP=4,OP=x,CO=8﹣x, ∴x2=(8﹣x)2+42. 解得:x=5. ∴AB=AP=2OP=10. ∴边AB的长为10. (2)如图1, ∵P是CD边的中点, ∴DP=DC. ∵DC=AB,AB=AP, ∴DP=AP. ∵∠D=90°, ∴sin∠DAP==. ∴∠DAP=30°. ∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°, ∴∠OAB=30°. ∴∠OAB的度数为30°. (3)作MQ∥AN,交PB于点Q,如图2. ∵AP=AB,MQ∥AN, ∴∠APB=∠ABP,∠ABP=∠MQP. ∴∠APB=∠MQP. ∴MP=MQ. ∵MP=MQ,ME⊥PQ, ∴PE=EQ=PQ. ∵BN=PM,MP=MQ, ∴BN=QM. ∵MQ∥AN, ∴∠QMF=∠BNF. 在△MFQ和△NFB中, . ∴△MFQ≌△NFB. ∴QF=BF. ∴QF=QB. ∴EF=EQ+QF=PQ+QB=PB. 由(1)中的结论可得: PC=4,BC=8,∠C=90°. ∴PB==4. ∴EF=PB=2. ∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2. 精选7、 解:(1)DF=DE.理由如下: 如答图1,连接BD. ∵四边形ABCD是菱形, ∴AD=AB. 又∵∠A=60°, ∴△ABD是等边三角形, ∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE.∵在△ADF与△BDE中,, ∴△ADF≌△BDE(ASA), ∴DF=DE; (2)DF=DE.理由如下: 如答图2,连接BD.∵四边形ABCD是菱形, ∴AD=AB. 又∵∠A=60°, ∴△ABD是等边三角形, ∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE. ∵在△ADF与△BDE中,, ∴△ADF≌△BDE(ASA), ∴DF=DE; (3)由(2)知,△ADF≌△BDE.则S△ADF=S△BDE,AF=BE=x. 依题意得:y=S△BEF+S△ABD=(2+x)xsin60°+×2×2sin60°=(x+1)2+.即y=(x+1)2+. ∵>0, ∴该抛物线的开口方向向上, ∴当x=0即点E、B重合时,y最小值=. 精选8、 (1)解:过点C作CF⊥y轴于点F, ∴∠AFC=90°, ∴∠CAF+∠ACF=90°. ∵△ABC是等腰直角三角形,∠BAC=90°, ∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC, ∴∠ACF=∠BAO. 在△ACF和△ABO中, , ∴△ACF≌△ABO(AAS) ∴CF=OA=1,AF=OB=2 ∴OF=1 ∴C(﹣1,﹣1); (2)证明:过点C作CG⊥AC交y轴于点G, ∴∠ACG=∠BAC=90°, ∴∠AGC+∠GAC=90°. ∵∠CAG+∠BAO=90°, ∴∠AGC=∠BAO. ∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°, ∴∠ADO=∠BAO, ∴∠AGC=∠ADO. 在△ACG和△ABD中 ∴△ACG≌△ABD(AAS), ∴CG=AD=CD. ∵∠ACB=∠ABC=45°, ∴∠DCE=∠GCE=45°, 在△DCE和△GCE中, , ∴△DCE≌△GCE(SAS), ∴∠CDE=∠G, ∴∠ADB=∠CDE; (3)解:在OB上截取OH=OD,连接AH 由对称性得AD=AH,∠ADH=∠AHD. ∵∠ADH=∠BAO. ∴∠BAO=∠AHD. ∵BD是∠ABC的平分线, ∴∠ABO=∠EBO, ∵∠AOB=∠EOB=90°. 在△AOB和△EOB中, , ∴△AOB≌△EOB(ASA), ∴AB=EB,AO=EO, ∴∠BAO=∠BEO, ∴∠AHD=∠ADH=∠BAO=∠BEO. ∴∠AEC=∠BHA. 在△AEC和△BHA中, , ∴△ACE≌△BAH(AAS) ∴AE=BH=2OA ∵DH=2OD ∴BD=2(OA+OD). l1 l2 l3 l4 h3 h2 h1 精选9、 (1)证:设交于点,与交于点, 由已知, 四边形是平行四边形,. 又. (2)证:作,垂足分别为, 在中, . . 又, . 又, l1 l2 l3 l4 h3 h2 h1 . (3)解:, , . 当时,随的增大而减小;当时,随的增大而增大.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 中考 数学 几何 压轴 辅助线 专题 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文