2023年初一数学学霸笔记下册.doc
《2023年初一数学学霸笔记下册.doc》由会员分享,可在线阅读,更多相关《2023年初一数学学霸笔记下册.doc(14页珍藏版)》请在咨信网上搜索。
初一数学下册知识点复习梳理归纳 第一章:整式的运算 一、知识框架 单项式 整 式 多项式 整 式 的 运 算 同底数幂的乘法 幂的乘方 积的乘方 幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法 多项式除以单项式 二、知识概念 一、单项式 1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 3、单项式中所有字母的指数和叫做单项式的次数。 二、多项式 1、几个单项式的和叫做多项式。 2、多项式没有系数的概念,但有次数的概念。 3、多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式 1、单项式和多项式统称为整式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分派率。 五、同底数幂的乘法 1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n表达n个am相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。 3、此法则也可以逆用,即:anbn =(ab)n。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n = am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。 十一、负指数幂 1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即: 十二、整式的乘法 (一)单项式与单项式相乘 1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 (二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分派率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。 (三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。 十三、平方差公式 1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。 3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。 4、平方差公式还能简化两数之积的运算,解这类题,一方面看两个数能否转化成 (a+b)•(a-b)的形式,然后看a2与b2是否容易计算。 十四、完全平方公式 1、即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 2、公式中的a,b可以是单项式,也可以是多项式。 3、掌握理解完全平方公式的变形公式: (1) (2) (3) 4、完全平方式:我们把形如:的二次三项式称作完全平方式。 5、完全平方公式可以逆用,即: 十五、整式的除法 (一)单项式除以单项式的法则 1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里具有的字母,则连同它的指数一起作为商的一个因式。 (二)多项式除以单项式的法则 1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表达为: 第二章 平行线与相交线 一、知识框架 余角 余角补角 补角 角 两线相交 对顶角 平行线与相交线 同位角 三线八角 内错角 同旁内角 平行线的鉴定 平行线 平行线的性质 尺规作图 二、知识概念 一、平行线与相交线 平行线:在同一平面内,不相交的两条直线叫做平行线。 若两条直线只有一个公共点,我们称这两条直线为相交线。 二、余角与补角 1、假如两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、假如两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 三、对顶角 1、两条直线相交成四个角,其中不相邻的两个角是对顶角。 2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。 四、垂线及其性质 1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 2、垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 五、同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了8个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。 六、六类角 1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。 3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 4、对顶角既有数量关系,又有位置关系。 七、平行线的鉴定方法 1、同位角相等,两直线平行。 2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、在同一平面内,假如两条直线都平行于第三条直线,那么这两条直线平行。 5、在同一平面内,假如两条直线都垂直于第三条直线,那么这两条直线平行。 八、平行线的性质 1、两直线平行,同位角相等。 2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。 4、平行线的鉴定与性质具有互逆的特性,其关系如下: 第三章 变量之间的关系 一、知识框架 自变量 变量的概念 因变量 变量之间的关系 表格法 关系式法 变量的表达方法 速度时间图象 图象法 路程时间图象 二、知识概念 一、变量、自变量、因变量 1、在某一变化过程中,不断变化的量叫做变量。 2、假如一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。 3、自变量与因变量的拟定: (1)自变量是先发生变化的量;因变量是后发生变化的量。 (2)自变量是积极发生变化的量,因变量是随着自变量的变化而发生变化的量。 二、表格 1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。 (1)一方面要明确表格中所列的是哪两个量; (2)分清哪一个量为自变量,哪一个量为因变量; 2、绘制表格表达两个变量之间关系 (1)列表时一方面要拟定各行、各列的栏目; (2)一般有两行,第一行表达自变量,第二行表达因变量; 三、关系式 1、用关系式表达因变量与自变量之间的关系时,通常是用品有自变量(用字母表达)的代数式表达因变量(也用字母表达),这样的数学式子(等式)叫做关系式。 2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。 四、图象 1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。 2、图象能清楚地反映出因变量随自变量变化而变化的情况。 3、用图象表达变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表达自变量,用竖直方向的数轴(又称纵轴)上的点表达因变量。 五、速度图象 1、弄清哪一条轴(通常是纵轴)表达速度,哪一条轴(通常是横轴)表达时间; 六、路程图象 1、弄清哪一条轴(通常是纵轴)表达路程,哪一条轴(通常是横轴)表达时间; 七、三种变量之间关系的表达方法与特点: 表达方法 特 点 表格法 多个变量可以同时出现在同一张表格中 关系式法 准确地反映了因变量与自变量的数值关系 图象法 直观、形象地给出了因变量随自变量的变化趋势 第四章 三角形 一、知识框架 三角形三边关系 三角形 三角形内角和定理 角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质 SSS 三角形 SAS 全等三角形 全等三角形的鉴定 ASA AAS HL(合用于RtΔ) 全等三角形的应用 运用全等三角形测距离 作三角形 二、知识概念 一、三角形概念 1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表达。 2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。 二、三角形中三边的关系 1、三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边。 用字母可表达为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a。 三、三角形中三角的关系 1、三角形内角和定理:三角形的三个内角的和等于1800。 2、三角形按内角的大小可分为三类: (1)锐角三角形,即三角形的三个内角都是锐角的三角形; (2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表达“直角三角形” (3)钝角三角形,即有一个内角是钝角的三角形。 3、鉴定一个三角形的形状重要看三角形中最大角的度数。 4、直角三角形的面积等于两直角边乘积的一半。 5、任意一个三角形都具有六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。 四、三角形的三条重要线段 1、三角形的三条重要线段是指三角形的角平分线、中线和高线。 2、三角形的角平分线: (1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 (2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。 3、三角形的中线: (1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 (2)三角形有三条中线,它们相交于三角形内一点。 4、三角形的高线: (1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。 (2)任意三角形都有三条高线,它们所在的直线相交于一点。 区 别 相 同 中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角 三条角平分线交于三角表内部 高 线 垂直于对边(或其延长线) 锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 钝角三角形:其中两条在三角表外部 五、全等图形 1、两个可以重合的图形称为全等图形。 2、全等图形的性质:全等图形的形状和大小都相同。 3、全等图形的面积或周长均相等。 七、全等三角形 1、可以重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。 八、全等三角形的鉴定 1、三边相应相等的两个三角形全等,简写为“边边边”或“SSS”。 2、两角和它们的夹边相应相等的两个三角形全等,简写为“角边角”或“ASA”。 3、两角和其中一角的对边相应相等的两个三角形全等,简写为“角角边”或“AAS”。 4、两边和它们的夹角相应相等的两个三角形全等,简写为“边角边”或“SAS”。 九、直角三角形全等的条件 1、在直角三角形中,斜边和一条直角边相应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 第五章 生活中的轴对称 一、知识框架 轴对称图形 轴对称分类 轴对称 角平分线 轴对称实例 线段的垂直平分线 等腰三角形 等边三角形 生活中的轴对称 轴对称的性质 轴对称的性质 镜面对称的性质 图案设计 轴对称的应用 镶边与剪纸 二、知识概念 一、轴对称图形 1、假如一个图形沿一条直线折叠后,直线两旁的部分可以完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 (1)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形; 二、轴对称 1、对于两个图形,假如沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 2、理解轴对称应注意: (1)有两个图形; (2)沿某一条直线对折后可以完全重合; (3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形; 三、角平分线的性质 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 四、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 五、等腰三角形 1、有两条边相等的三角形叫做等腰三角形; 2、相等的两条边叫做腰;另一边叫做底边; 3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角; 4、三条边都相等的三角形也是等腰三角形。 5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。 6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。 7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。 8、“三线合一”是等腰三角形所特有的性质,一般三角形不具有这一重要性质。 9、“三线合一”是等腰三角形特有的性质,是指其顶角平分线,底边上的高和中线,这三线,并非其他。 10、等腰三角形的两个底角相等,简写成“等边对等角”。 11、鉴定一个三角形是等腰三角形常用的两种方法: (1)两条边相等的三角形是等腰三角形; (2)假如一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”。 六、等边三角形 1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形。 3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。 4、等边三角形的三边都相等,三个内角都是600。 七、轴对称的性质 1、两个图形沿一条直线对折后,可以重合的点称为相应点(对称点),可以重合的线段称为相应线段,可以重合的角称为相应角。 九、镜面对称 1、镜面对称的有关性质: (1)任何一个平面图形(物体)在镜子中的像与它是可以重合的。因此,一个轴对称图形在镜子中的像仍是轴对称图形。 (2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧; 2、关于数字0、1、3、8在镜面中像的两个结论: (1)假如写数字的纸条垂直于镜面摆放,则纸条上写的0、1、3、8所成的像与本来的数字完全同样。 第六章 概率 一、知识框架 必然事件 事件 不也许事件 不拟定事件 概率 等也许性 游戏的公平性 概率的定义 概率 几何概率 设计概率模型 二、知识概念 一、事件 1、事件分为必然事件、不也许事件、不拟定事件。 2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不也许不发生,即发生的也许是100%(或1)。 3、不也许事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的也许性为零。 4、不拟定事件:事先无法肯定会不会发生的事件,也就是说该事件也许发生,也也许不发生,即发生的也许性在0和1之间。 5、三种事件都是相对于事件发生的也许性来说的,若事件发生的也许性为100%,则为必然事件;若事件发生的也许性为0,则为不也许事件;若事件不一定发生,即发生的也许性在0∽1之间,则为不拟定事件。 6、简朴地说,必然事件是一定会发生的事件;不也许事件是绝对不也许发生的事件;不拟定事件是指有也许发生,也有也许不发生的事件。 二、等也许性 1、等也许性:是指几种事件发生的也许性相等。 2、游戏规则的公平性:就是看游戏双方的结果是否具有等也许性。 三、概率 1、概率:是反映事件发生的也许性的大小的量,它是一个比例数,一般用P来表达,P(A)=事件A也许出现的结果数/所有也许出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不也许事件发生的概率为0,记作P(不也许事件)=0; 4、不拟定事件发生的概率在0∽1之间,记作0<P(不拟定事件)<1。 5、概率是对“也许性”的定量描述,给人以更直接的感觉。 6、概率并不提供拟定无误的结论,这是由不拟定现象导致的。 7、概率的计算: (1)直接数数法:即直接数出所有也许出现的结果的总数n,再数出事件A也许出现的结果数m,运用概率公式直接得出事件A的概率。 (2)对于较复杂的题目,我们可采用“列表法”或画“树状图法”。 四、几何概率 1、事件A发生的概率等于此事件A发生的也许结果所组成的面积(用SA表达)除以所有也许结果组成图形的面积(用S全表达),所以几何概率公式可表达为P(A)=SA/S全,这是由于事件发生在每个单位面积上的概率是相同的。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 数学 笔记 下册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文