九年级数学上概率初步教案人教版.docx
《九年级数学上概率初步教案人教版.docx》由会员分享,可在线阅读,更多相关《九年级数学上概率初步教案人教版.docx(3页珍藏版)》请在咨信网上搜索。
25.3 用频率估计概率 1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率. 2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,发展概率观念. 3.体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力. 阅读教材第142至144页,完成下列问题. 自学反馈 1.估算幼苗的移植成活率,运输中柑橘完好的概率,种子的发芽率等事例中,都利用了________________的方法来计算. 2.在种子发芽率的试验中,科研人员经过大量实验得到不同数量的种子发芽的频率都约是0.78,则可以估计种子发芽率是________,从而可估计200千克的种子约有________千克种子发芽. 3.一个密闭不透明的盒子里有若干个黑球,在不允许将球倒出来的情况下,为估计黑球的个数,小刚向其中放入8个白球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到白球,估计盒中大约有黑球( ) A.28个 B.30个 C.36个 D.42个 4.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张. 5.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有________个黑球. 活动1 小组讨论 例1 某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格: 转动转盘 的次数n 100 150 200 500 800 1 000 落在“铅笔” 的次数m 68 111 136 345 564 701 落在“铅笔” 的频率mn 0.68 0.74 0.68 0.69 0.705 0.701 (2)请估计,当n很大时,落在“铅笔”的频率将会接近多少? 解:0.7. (3)假如你去转动该转盘一次,你获得铅笔的概率约是多少? 解:0.7. 例2 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据: 摸球的次数n 100 150 200 500 800 1000 摸到白球的 次数m 58 96 116 295 484 601 摸到白球的 频率mn 0.58 0.64 0.58 0.59 0.605 0.601 (1)请估计,当n很大时,摸到白球的频率将会接近0.6; (2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4; (3)试估算口袋中黑、白两种颜色的球各有多少只? 解:8,12. 频率与概率有什么区别与联系? (1)一般地,频率是随着试验次数的变化而变化. (2)概率是一个客观的数量. (3)频率是概率的近似值,概率是频率的稳定值,它是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越小,即频率靠近概率. 活动2 跟踪训练 1.某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问: (1)最后一个3分球由甲、乙中谁来投,获胜的机会更大? (2)请简要说说你的理由. 2.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下: 实验次数 20 40 60 80 100 120 140 160 180 200 3的倍数 的频数 5 13 17 26 32 36 39 49 55 61 3的倍数 的频率 (1)完成上表; (2)频率随着试验次数的增加,稳定于什么值左右? (3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少? (4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少? 当试验次数较大时,试验频率稳定于理论概率. 阅读教材第144至146页,完成下列问题. 自学反馈 1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( ) A.90个 B.24个 C.70个 D.32个 2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ) A.11 000 B.1200 C.12 D. 3.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ) A.10粒 B.160粒 C.450粒 D.500粒 4.在“抛一枚均匀硬币”的实验中,如果现在没有硬币,那么下面各个试验中哪个不能代替( ) A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面” B.两个形状大小完全相同,但一红一白的两个乒乓球 C.扔一枚图钉 D.人数均等的男生、女生,以抽签的方式随机抽取一人 活动1 小组讨论 例1 在抛一枚均匀硬币的试验中,如果没有硬币,则下列可作为替代物的是(D) A.一颗均匀的骰子 B.瓶盖 C.图钉 D.两张扑克牌(1张黑桃,1张红桃) 例2 不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代试验方法不可行的是(C) A.用3张卡片,分别写上“白1”、“白2”,“红”,然后反复抽取 B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取 C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抛 D.用一个转盘,盘面分白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘. 模拟试验解决实际问题的合理性. 例3 王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1 000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合到鱼群中后,从中捕捞出150条鱼,发现有标记的鱼有3条,则: (1)池塘内约有多少条鱼? (2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多少元? 解:(1)50 000条.(2)25 000元. 活动2 跟踪训练 妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替,你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由. 实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格的填写和有关结论的得出. 颜色 红 绿 蓝 频 数 频 率 概 率 问题:(1)你认为哪种情况的概率最大? (2)当试验次数较小时,比较三种情况的频率,你能得出什么结论? 活动3 课堂小结 1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率. 2.模拟试验在实际问题中的作用. 3.怎样对一个简单的问题提出一种可行的模拟试验. 【预习导学1】 自学反馈 1.频率来估计概率 2.0.78 156 3.A 4.9 5.48 【合作探究1】 活动2 跟踪训练 1.略.(答案合理即可) 2.(1)0.25 0.325 0.283 0.325 0.32 0.3 0.279 0.306 0.306 0.305 (2)0.3. (3)0.3. (4)0.3. 【预习导学2】 自学反馈 1.B 2.B 3.C 4.C 【合作探究2】 活动2 跟踪训练 略. 20 × 20- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 概率 初步 教案 人教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文