2018九年级数学上35圆周角2同步导学练含答案.docx
《2018九年级数学上35圆周角2同步导学练含答案.docx》由会员分享,可在线阅读,更多相关《2018九年级数学上35圆周角2同步导学练含答案.docx(2页珍藏版)》请在咨信网上搜索。
3.5 圆周角(2) 在同圆或等圆中,等弧或同弧所对的圆周角相等,相等的圆周角对的弧也相等.要特别注意同圆或等圆这个条件. 1.如图所示,已知在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的度数为(B). A.43° B.35° C.34° D.44° (第1题)(第2题)(第3题) 2.如图所示,正方形ABCD内接于⊙O,点E是上任一点,则∠DEC的度数是(B). A.30° B.45° C.60° D.80° 3.如图所示,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为(D). A.1 B.2 C.2 D. 4.已知在半径为2的⊙O中,圆内接△ABC的边AB=2,则∠C的度数为(C). A.60° B.30° C.60°或120° D.30°或150° 5.如图所示,OB是⊙O的半径,AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连结PA,则∠PAB的度数可以是 70° (写出一个即可). (第5题)(第6题) (第7题) 6.如图所示,⊙P经过点A(0,),O(0,0),B(1,0),点C在第一象限的上,则∠BCO= 30° . 7.如图所示,A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF= 15° . 8.如图所示,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°. (1)求∠EBC的度数. (2)求证:BD=CD. (第8题) (第8题答图) 【答案】(1)∵AB是⊙O的直径,∴∠AEB=90°.∵∠BAC=45°,∴∠ABE=45°.∵AB=AC,∴∠ABC=∠C=67.5°.∴∠EBC=22.5°. (2)如答图所示,连结AD.∵AB是⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴BD=CD. (第9题) 9.如图所示,△ABC内接于圆,D是BC上一点,将∠B沿AD翻折,点B正好落在圆上的点E处. (1)求证:AD过圆心. (2)若∠C=38°,求∠BAE的度数. 【答案】 (第9题答图) (1)如答图所示,连结BE,BE交AD于点F.由题意得∠AFB=∠AFE=90°,BF=EF.∴AD垂直平分BE.∴AD过圆心. (2)由题意得AB=AE,∴∠ABE=∠AEB=∠C=38°.∴∠BAE=104°. 10.如图所示,AB是⊙O的直径,点C,D为圆上两点,且,CF⊥AB于点F,CE⊥AD的延长线于点E. (第10题) (1)求证:DE=BF. (2)若∠DAB=60°,AB=6,求△ACD的面积. 【答案】(1)∵,∴CB=CD,∠CAE=∠CAB.∵CF⊥AB,CE⊥AD,∴CE=CF.∴Rt△CED≌Rt△CFB.∴DE=BF. (2)∵CE=CF,∠CAE=∠CAB,∴△CAE≌△CAF.∵AB是⊙O的直径,∴∠ACB=90°.∵∠DAB=60°,AB=6,∴BC=3.∵CF⊥AB,∴∠FCB=30°.∴CF=,BF=.∴S△ACD=S△ACE-S△CDE=S△ACF-S△CFB=×(AF-BF)×CF= (AB-2BF)×CF=. 11.如图所示,四边形ABCD为⊙O的内接四边形,延长AB与DC相交于点G,AO⊥CD,垂足为点E,连结BD,∠GBC=50°,则∠DBC的度数为(C). A.50° B.60° C.80° D.90° (第11题)(第12题) (第13题) (第13题答图) 12.如图所示,矩形OABC内接于扇形MON,当CN=CO时,∠NMB的度数是(C). A.45° B.15° C.30° D.22.5° 13.已知在⊙O中,所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO,AC为边构造AODC.当∠A= 27 °时,线段BD最长. 【解析】如答图所示,连结OC,延长AO交⊙O于点F,连结DF.∵四边形ACDO是平行四边形,∴∠DOF=∠CAO,DO=AC.∵OF=AO,∴△DOF≌△CAO.∴DF=OC.∴点D的运动轨迹是以点F为圆心、OC为半径的圆.∴当点D在BF的延长线上时,BD的值最大.∵∠AOB=108°,∴∠FOB=72°.∵OF=OB,∴∠OFB=54°.∵FD′=FO,∴∠FOD′=∠FD′O=27°.∴∠C′AO=∠FOD′=27°. 14.如图所示,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= 2 . (第14题)(第15题)(第16题) 15.如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,则四边形ADBC的面积为 9+4 . 16.如图所示,过D,A,C三点的圆的圆心为点E,过B,E,F三点的圆的圆心为点D,如果∠A=63°,那么∠B= 18° . (第17题) 17.如图所示,在△ABC中,以AC边为直径的⊙O交BC于点D,在上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于点H. 求证:AC⊥BH. 【答案】 (第17题答图) 如答图所示,连结AD.∵∠DAC=∠DEC,∠EBC=∠DEC,∴∠DAC=∠EBC.∵AC是⊙O的直径, ∴∠ADC=90°.∴∠DAC+∠DCA=90°.∴∠EBC+∠DCA=90°.∴∠BGC=90°.∴AC⊥BH. 18.已知等边三角形ABC内接于⊙O,点P是上的一点(端点除外),延长BP至点D,使BD=AP,连结CD,PC. (第18题) (1)若AP过圆心O,如图1所示,请你判断△PDC是什么三角形,并说明理由. (2)若AP不过圆心O,如图2所示,△PDC又是什么三角形?为什么? 【答案】(1)△PDC为等边三角形.理由如下:∵△ABC为等边三角形,∴AC=BC. ∵∠PAC=∠PBC,AP=BD,∴△APC≌△BDC.∴PC=DC.∵AP过圆心O,AB=AC,∠BAC=60°, ∴∠BAP=∠PAC=∠BAC=30°.∴∠PBC=∠PAC=30°∠BCP=∠BAP=30°.∴∠CPD=∠PBC+∠BCP=30°+30°=60°.∴△PDC为等边三角形. (2)△PDC仍为等边三角形.理由如下:由(1)得PC=DC.∵∠BAP=∠BCP,∠PBC=∠PAC,∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°.∴△PDC为等边三角形. (第19题) 19.【盐城】如图所示,将⊙O沿弦AB折叠,点C在上.点D在AB上,若∠ACB=70°,则∠ADB= 110 °. 20.【安徽】如图所示,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连结AE. (1)求证:四边形AECD为平行四边形. (2)连结CO,求证:CO平分∠BCE. (第20题) (第20题答图) 【答案】(1)由圆周角定理得∠B=∠E,又∠B=∠D,∴∠E=∠D.∵CE∥AD,∴∠D+∠ECD=180°.∴∠E+∠ECD=180°.∴AE∥CD.∴四边形AECD为平行四边形. (2)如答图所示,作OM⊥BC于点M,ON⊥CE于点N.∵四边形AECD为平行四边形,∴AD=CE. 又AD=BC,∴CE=CB.∴OM=ON.又OM⊥BC,ON⊥CE,∴点O在∠BCE的平分线上.∴CO平分∠BCE. 21.如图1所示,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上. (1)证明:B,C,E三点共线. (2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM. (3)如图2所示,将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1,若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若成立,请证明;若不成立,请说明理由. (第21题) 图1图2(第21题答图) 【答案】(1)∵AB是直径,∴∠BCA=90°.∵等腰直角三角形DCE中∠DCE是直角,∴∠BCA=∠DCE=90°.∴∠BCA+∠DCE=180°.∴B,C,E三点共线. (2)如答图1所示,连结BD,AE,ON,延长BD交AE于点F.∵∠ABC=45°,∴CB=CA.∵CD=CE, ∴Rt△BCD≌Rt△ACE.∴BD=AE,∠EBD=∠CAE.∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BF⊥AE.∵M是线段BE的中点,N是线段AD的中点,O为AB的中点,∴ON=BD,OM=AE,ON∥BD,OM∥AE.∴ON=OM,ON⊥OM.∴△ONM为等腰直角三角形.∴MN=2OM. (3)成立.理由如下:如答图2所示,连结BD1,AE1,ON1.∵∠ACB-∠ACD1=∠D1CE1-∠ACD1,∴∠BCD1=∠ACE1.∵CB=CA,CD1=CE1,∴△BCD1≌△ACE1.与(2)同理可证△ON1M1为等腰直角三角形,∴M1N1=OM1. 20 × 20- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 九年级 数学 35 圆周角 同步 导学练含 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文