毕业论文-数函项级数一致收敛的几个判别法数学与应用数学专业.doc
《毕业论文-数函项级数一致收敛的几个判别法数学与应用数学专业.doc》由会员分享,可在线阅读,更多相关《毕业论文-数函项级数一致收敛的几个判别法数学与应用数学专业.doc(22页珍藏版)》请在咨信网上搜索。
1、数学与统计学院2012届毕业论文分类号 O174.1 编 号 2012010743 毕业论文 题 目 函数项级数一致收敛的几个判别法 学 院 数学与统计学院 姓 名 郝金贵 专 业 数学与应用数学 学 号 281010743 研究类型 基础研究 指导教师 贾凤玲 提交日期 2012年5月22日 17 原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果.学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处.除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果.本声明的法律责任由本人承担.论文作者签名: 年 月 日
2、 论文指导教师签名:函数项级数一致收敛的判别法的讨论郝金贵(天水师范学院 数学与统计学院 ,甘肃,天水,741000)摘要:本文着重介绍函数项级数一致收敛的几种判别法,首先通过问题引入探讨函数项级数一致收敛的概念,然后进一步研究了几种判别方法,即对数判别法;积分判别法;有效充要判别法;加逼收敛判别法等,并对每种新方法给予严格证明.关键字:函数项级数;一致收敛性;积分判别法;有效充要判别法;加逼收敛判别法;比较判别法.The Discussion on Some Method for Uniform Convergence of Function Series HaoJinguiAbstract
3、: the paper gives several discriminant method on uniform convergence of Function Series,firstly, discusses a series of function uniform convergence concepts by introducing a problem,and then further researches on several identifying method, such that logarithm discriminant method,integral discrimina
4、nt method,effective sufficient discriminant method,and forced convergence test, etc,and new methods of each given strict proof.Keywords: function Series;uniform convergence;integral discriminant method;effective sufficient discriminant method;and forced convergence test;more discriminant method目录引言1
5、1.函数项级数一致收敛的定义11.1函数项级数一致收敛概念引入12.函数项级数一致收敛的判别方法22.1比式判别法22.2根式判别法22.3对数判别法32.4积分判别法32.4.1正项级数判别法的回顾32.4.2函数项级数一致收敛的积分判别法42.5利用确界条件把函数项级数转化为相应的数项级数进行判别52.6有效充要判别法82.7夹逼收敛判别法102.8比较判别法113.正项函数项级数一致收敛的几个新的判别法及证明12参考文献16函数项级数一致收敛的几个判别法的讨论引言 众所周知,函数项级数作为数项级数的推广,在研究内容上同数项级数有许多及其相似的地方,对比数项级数的收敛性和函数项级数的一致收
6、敛性判别法,不难发现他们在判别方法上极其相似,特别是在判别法的名称上,比如它们都有Cauchy判别法,Abel判别法,Dirichlete判别法等,这里就是根据数项级数判别法探讨几个函数项级数一致收敛的判别法.1 函数项级数一致收敛的定义1.1函数项级数一致收敛概念引入 我们先来看一下下面这样一个例子: 例1 设u1(x) = x, un(x) = x nx n-1( n=2,3,),x0,1由上知,Sn(x)=k(x) = x n, S(x) = ,当x(0,1) 时,| Sn(x)S(x) | = x n . | Sn(x) S(x) | = x n n In x.当时,变,也变,且当时,
7、因此找不到公用的N*,使得有|Sn(x)- S(x)|.不论n多么大,总有离1很近的x,使得Sn(x)离S(x)很远.再来看这样一个例子:例2 设u1=,x,所以|Sn(x) S(x)|=.取N=+1,恒有| Sn(x)S(x)|.由上面的两个例子可以看出,并非所有的函数项级数对于给定的,都能找到一个公用的N*,使得恒成立.由此,我们引出一致收敛的概念. 定义 设函数项级数在数集E上收敛于S(x).如果使得,恒有,则称在E上一致收敛于S(x).2 函数项级数一致收敛的判别方法2.1比式判别法 定理2.1 设un(x)为定义在数集D上正的函数列,记,存在正整数N及实数q、M,使得:q n(x)q
8、N,成立,则函数项级数在D上一致收敛.定理1有极限形式: 定理2.2 设为定义在数集D上正的函数列,记,若 0q1,且在D上一致有界,则函数项级数在D上一致收敛.2.2根式判别法 定理2.3 设un(x)为定义在数集D上的函数列,若存在正整数N,使得,对成立,则函数项级数在D上一致收敛. 注:当定理3条件成立时,级数在D上还绝对收敛. 定理2.4 设为定义在数集D上的函数列,若对成立,则函数项级数在D上一致收敛.2.3对数判别法 定理2.5 设为定义在数集D上正的函数列,若=p(x)存在,那么: 若对,则函数项级数在D上一致收敛; 若对, 则函数项级数在D上不一致收敛. 证明 由定理条件知,对
9、,有,即,则当成立时,有,而p级数当p大于1时收敛,由优级数判别法知函数项级数在D上一致收敛;而当对成立时,有当p1时收敛,p1发散.根据定理1知级数在p1时收敛,在p1时发散.2.4.2函数项级数一致收敛的积分判别法 定理2.7 (函数项级数一致收敛的柯西准则) 函数项级数在数集D上一致收敛的充要条件是:对任意给定的正数,总存在某一正整数N,使得当nN时对一切x和一切正整数p,都有. 定理2.8 (含参变量反常积分一致收敛的柯西准则)含参变量反常积分在a,b上一致收敛的充要条件是:对任意给定的正数,总存在某一实数Mc,使得当M时,对一切xa,b都有. 定理2.9 设f(x,y)为区域R=(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业论文 数函项 级数 一致 收敛 几个 判别 数学 应用 专业
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。