二项双侧检验不同拒绝域选取研究_方红燕.pdf
《二项双侧检验不同拒绝域选取研究_方红燕.pdf》由会员分享,可在线阅读,更多相关《二项双侧检验不同拒绝域选取研究_方红燕.pdf(6页珍藏版)》请在咨信网上搜索。
1、第40卷第2期2023年06月Vol.40,No 2Jun.2023阜阳师范大学学报(自然科学版)Journal of Fuyang Normal University(Natural Science)方红燕,靳立帅,朱颖,等:二项双侧检验不同拒绝域选取研究收稿日期:2022-07-02基金项目:国家自然科学基金(11801003);安徽省自然科学基金(2008085MA14);安徽大学大学生创新创业训练项目(X202210357001)资助。作者简介:方红燕(1985-),女,博士,副教授,研究方向:生物统计,统计计算,Email:。二项双侧检验不同拒绝域选取研究方红燕*,靳立帅,朱颖,李晓
2、琴(安徽大学 大数据与统计学院,安徽 合肥 230601)摘要:假设检验理论是数理统计知识体系中很重要的一环。在双侧假设检验问题中,对于拒绝域的构造通常是采用二分法的形式来得到,其优点是理论简单并且容易操作。但在零假设下统计量的分布为非对称分布情形下,由区间估计理论知通过二分法构造的区间长度并非最优。已知概率参数不等于 0.5 的二项分布并非对称分布,以二项检验中的双侧假设检验问题为例,分别用二分法和最短距法构造双侧检验的拒绝域进行研究,模拟比较二者的 I 型错误和检验功效情况。实验结果表明:最短距法构造的拒绝域对应的检验其 I 型错误更加稳健,检验的功效也更高。关键词:假设检验;拒绝域;p
3、值;二项检验;双侧检验;检验功效中图分类号:O212.1文献标识码:A文章编号:2096-9341(2023)02-0001-06DOI:10.14096/34-1069/n/2096-9341(2023)02-0001-06The different rejection region study of two-sided binomial testFANG Hongyan,JIN Lishuai,ZHU Ying,LI Xiaoqin(School of Big Data and Statistics,Anhui University,Hefei Anhui 230601,China)Abs
4、tract:Hypothesis Testing Theory is an important part in statistic theory.In two-sided hypothesis testing problems,theconstruction of the rejection domain is usually obtained in the form of a dichotomy,which has the advantage of being simple the-oretically and easy to manipulate.Nevertheless,the inte
5、rval length constructed by the dichotomy is not the optimal one accord-ing to the interval estimation theory,especially when the distribution of the test statistic under the null hypothesis is not symmet-ric.Given that the binomial distribution whose probability parameter is not equal to 0.5 is not
6、symmetrical,the binomial hypothe-sis testing problem is taken as an example,and the rejection domain of the binomial test is constructed by the dichotomy methodand the shortest distance method respectively to simulate and compare their type I errors and test efficacy.The simulation resultshow that t
7、he test with rejection region generated by the shortest length method has more precise type I error rate and higher test-ing power.Key words:hypothesis test;rejection region;p value;binomial test;two-sided test;testing power假设检验是统计推断的主要形式之一,是数理统计知识体系中很重要的一环,是数理统计基础理论与实际问题应用的桥梁纽带。随着当今社会的快速发展,数据的急速膨胀带
8、来的数据挖掘任务使得假设检验在经济、医学、管理、心理学、质量管控、农业、体育等等领域都有了越来越广泛的应用1-4。其中,双侧检验是假设检验问题中最常用和最普遍的检验问题,通过对双侧检验的结果第40卷阜阳师范大学学报(自然科学版)2推导变换很容易得到单侧的检验结果。由此,双侧假设检验问题是现代数据分析问题中的非常重要的统计问题。显著性假设检验理论中,通常把样本空间划分成拒绝域和接受域,当观测的样本落入拒绝域的时候就拒绝原假设。因此,对于双侧假设检验问题,通常的作法是用二分法来划分拒绝域5。由于二分法划分拒绝域的方式在零假设的分布是对称的情形下是最优的,相对来说形式简单易于使用,因此通常的拒绝域的
9、选取都采用此类方法6-15。假设检验理论和区间估计理论是相通的。由区间估计理论可知,当统计量在零假设下的分布是对称时,由二分法确定的置信区间的长度是最短的,此时的置信区间最优。但是当零假设的分布非对称时,由二分法得到的置信区间长度并非最短,此时的置信区间并非最优16。实际问题中,虽然拒绝域的选取通常选用二分法,也有不是采用二分法构造拒绝域的例子。譬如,统计软件R 中二项检验的运算命令 binom.test 就不是采用二分法来构造拒绝域。对于同一个假设检验问题,通常通过构造不同的检验统计量进行检验,一个好的检验统计方法需要在控制 I 型错误的前提下拥有更高的检验功效。默认情况下对于拒绝域的划分采
10、用相同的构造方式。事实上,对同一个检验统计量,不同的拒绝域划分方式也可以得到不同的结果。本文在给定显著性水平下,研究不同的拒绝域的设置方式下同一检验方法的检验情况,包括检验的 I 型错误和检验功效。在统计量的分布是对称分布时,两种检验方法的设置机制是相同的,因此主要比较非对称分布的检验情况。由于二项检验当概率参数不等于 0.5 时,该项分布是非对称的,本文就以二项分布为例进行介绍和比较。1拒绝域的两种不同设置方法1.1拒绝域的一般提法对于一个常见的参数假设检验问题,原假设为H0,对立假设为H1。针对该假设检验问题,提出某一个检验统计量T,对于一个样本量为n的样本空间,划分样本空间为拒绝域W和接
11、受域S两个不相交的集合。在给定一组观测样本x1,xn时,判断这组样本是落入拒绝域还是落入接受域,如果样本落入拒绝域则拒绝原假设,否则就接受原假设。不同的拒绝域的确定方式就对应了不同的检验方法。通常,拒绝域W的确定采用二分法,也叫双侧等尾拒绝域17,即根据小概率发生的原则,在给定显著性水平的前提下,根据检验统计量T在原假设下的分布函数F(x)确定下式:W1=(x1,xn):Tc2,其中常数c1,c2满足c1c2且c1=maxx:F(x)2,c2=minx:F(x)1-2.对于连续型分布函数F(x),括号中不等式可以取等式。譬如,对于正态分布函数,给定显著性水平,二分法的拒绝域的确定如图 1 所示
12、。拒绝域拒绝域0c1c2/2/2双侧检验图 1二分法拒绝域确定的示意图根据区间估计理论,由常数c1,c2确定的置信区间满足P(c1Tc2)=1-,这样处理的优点是简单实用。但是对于非对称的分布函数F(x),这样确定的置信区间长度c2-c1并非最短。以连续型分布函数为例,对于F(x)对应的概率密度函数f(x),最优的置信区间应满足下列两个方程:c1c2f(x)dx=1-,f(c1)=f(c2).由于置信区间理论和假设检验理论是相通的,按照最优的置信区间的确定方法来确定拒绝域 的 临 界 值c1和c2,得 到 的 拒 绝 域W2=(x1,x2):Tc216,被称为最短距方法。虽然两种拒绝域的形式相
13、同,但是临界值的取值在概率密度函数f(x)为非对称分布时不同。因此,不同的临界值的选取得到了不同的拒绝域,第2期方红燕,靳立帅,朱 颖,等:二项双侧检验不同拒绝域选取研究3理论上,相应的检验方法也有所不同。以二项检验为例,对二项检验的同一个检验方法分别采取二分法和最短距法确定检验的拒绝域,比较两种方式的检验是否存在区别。1.2二项检验的拒绝域和 p 值提法二项检验是非参数检验方法中一种非常重要的检验方法,在数据的分布不能确定是正态的情况下有着很重要的应用,包括符号检验、分位数检验、Cox-Staut 趋势存在性检验等18,在实际中也有众多的应用研究19-21。对于一个双侧检验问题,当一个统计量
14、T在原假设下的分布是二项分布。即TB(n,p)时,由二分法确定的二项检验的拒绝域的临界值为c1=arg maxK(k=0KP(T=k)2),c2=arg minK(k=KnP(T=k)2).(1)记pk=P(T=k),对应最短距法的拒绝域的临界值由下式确定p0=arg maxpk(pipkpi),i:pip0=0,1,c1,c2,n.(2)由于实际问题中,通常人们采用 p 值的形式进行假设检验判断22,23,因此,对实际观测样本x1,xn,计算得到检验统计量的观测值T0,根据拒绝域的确定方式,分别得到对应两种拒绝域的 p值的计算方式pv1=2min(F(T0),1-F(T0-1),(3)pv2
15、=piP(T0)pi.(4)当计算得到的 p 值小于等于给定的显著性水平时,拒绝原假设,否则接受原假设。例如,对于服从二项分布TB(28,0.25)的检验统计量,设=0.05,则由二分法确定的拒绝域的临界值为c1=2,c2=13。而由最短距法确定的临界值为c*1=2,c*2=12。假设观测统计量为T0=5,二项检验的二分法和最短距法所对应的拒绝域和 p 值计算分别见图 2 所示的上图和下图。2模拟研究由于二项分布中参数p=0.5时,二项分布的概率分布是对称的,二分法和最短距法确定拒绝域相同,因此选择p0.5概率分布不对称时进行研究。因此采用非参数检验中的分位数检验进行分析比较研究。T B(28
16、,0.25)=0.050.150.100.050.00036912 1518 21 24 270.01660.0112T=50pv1=2(5)=0.5276F0.150.100.050.00036912 1518 21 24 27T B(28,0.25)=0.050.150.100.050.00036912 1518 21 24 270.01660.0112T=50pv2i=0.5136p0.150.100.050.00036912 1518 21 24 270.01660.0112pp15M0,S-=i=1nIXiM0。这里I表示示性函数。记N=S+S-,则S-B(N,0.25)。对于假设检
17、验问题(5),分别用二分法和最短距法公式(3)和(4)计算检验的 p 值进行假设检验。生 成 数 据 的 分 布,当 取 正 态 分 布 时,取N(,2),取两种不同的值 1 和 5。当取均匀分布时,设置XU(-2+,2+)。M0取值为各分布当=0时对应的四分位点。当参数选取=0时,对应的是原假设下的模拟情况。在对立假设下,分别选取-3-0.1 和 0.13 的若干数据进行分析。对于 I 型错误的分析比较,选取样本量从20 到 1 000 不等,其中 20,30 到 100 对应小样本的数据分析,150,200,250,300 到 1 000 对应大样本的数据分析。在对立假设下,样本量选取n=
18、50和 100 两种情形进行比较分析。原假设和对立假设下的显著性水平分别选取 0.001,0.01 和 0.05 三种情况。在原假设下,对每一种参数设置重复模拟 100 000 次得到 I 型错误率。在对立假设下,重第40卷阜阳师范大学学报(自然科学版)4复模拟 10 000 次得到检验的功效。2.2模拟结果2.2.1I 型错误率=0.00120 60 100 350 600 8500.00000.00050.00150.0010nTypel error rates二分法最短距法=0.0120 60 100 350 600 8500.0000.0050.0150.010nTypel error
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项双侧 检验 不同 拒绝 选取 研究 方红燕
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。