基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析毕业论文.doc
《基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析毕业论文.doc》由会员分享,可在线阅读,更多相关《基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析毕业论文.doc(20页珍藏版)》请在咨信网上搜索。
1、应用回归分析课程设计报告课 程: 应用回归分析 题 目: 人均可支配收入的分析 年 级: 11金统 专 业: 金融统计 学 号: 姓 名: 指导教师: 基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析摘要:收入分配和消费结构都是国民经济的重要课题居民消费的主要来源是居民收入而消费又是拉动经济增长的重要因素。本文将通过多远统计分析方法对我国各地区城镇居民收入的现状进行分析。通过分析找出我国城镇居民收入特点及其中存在的不足。城镇居民可支配收入是检验我国社会主义现代化进程的一个标准。本文根据我国城镇居民家庭人均可支配收入为研究对象,选取可能影响我国城镇居民家庭人均可支配收入的城乡居民储蓄存
2、款年底余额、城乡居民储蓄存款年增加额、国民总收入、职工基本就业情况、城镇居民家庭恩格尔系数(%)5个因素,运用多元线性回归分析建立模型,先运用普通最小二乘估计求回归系数再对方程进行异方差、自相关、和多重共线性诊断,用迭代法消除了自变量之间的自相关。对于多重共线性问题,先是用逐步回归和剔除变量的方法,最终转变为用方差扩大因子法城乡居民储蓄存款年增加额剔除城镇居民家庭恩格尔系数(%)解决多重共线性,建立最终回归方程标准化回归方程以其探究最后进入回归方程的几个变量在影响城镇居民收入孰轻孰重,达到学习与生活结合的效果。分析出影响城镇居民收入的主要原因,并对模型联系实际进行分析,以供国家进行决策做参考。
3、关键词:多元线性回归 异方差 自相关 多重共线性 逐步回归 方差扩大因子(一)引言: 改革开放以来我国的国民经济增长迅速居民的收入水平也大幅提高但居民收入分配差距也在不断扩大。2008年的金融危机为我国带来的后遗症还在继续影响着居民正常生活物价上涨和通货膨胀的压力仍然困扰着老百姓收入和消费支出体系的健康发展至关重要。消费是拉动国民经济增长的一架重要马车收入又是决定居民消费的最主要因素。我国人口基数大消费群体众多但由于居民收入分配差距大直接影响到居民消费需求的降低从而影响经济增长。而且随着中国特色的市场经济体制的建立各种收入分配问题也愈发明显。因此鉴于篇幅限制本文就只针对城镇居民的收入进行分析。
4、中国网北京7月13日讯 国家统计局今日发布数据显示,我国城乡居民收入稳定增长,农村居民收入增长较快。上半年,城镇居民家庭人均总收入12076元。其中,城镇居民人均可支配收入11041元,同比增长13.2%,扣除价格因素,实际增长7.6%。在城镇居民家庭人均总收入中,工资性收入同比名义增长11.5%,转移性收入增长9.9%,经营净收入增长31.2%,财产性收入增长20.4%。农村居民人均现金收入3706元,同比增长20.4%,扣除价格因素,实际增长13.7%。其中,工资性收入同比名义增长20.1%,家庭经营收入增长21.0%,财产性收入增长7.5%,转移性收入增长23.2%。财政部副部眨楼继伟就
5、调整城镇中低收入居民收 入政策符记者问中说:“由于城乡居民收入增长趋缓,居民对未来支出增加的预期增强, 消费意愿减弱,导致消费需求不旺。针对有效需求不足这一突出问题,党中央利国务院 决定, 积极调整收入分配政策,通过提高国有企业下岗职工等低收入者的生活保障水平 和增加机关事业单位职工工资等措施,逐步改变居民收入预期下降、支出预期:列、高 收入者消费意愿不强、低收入者消费能力不足的状况,旨在刺激消费需求,健进国民经 济持续快速健康发展。”下面通过统计数据对我国城镇居民家庭人均可支配收入的总体现状和发展态势进行分析了解我国居民收入分配情况。(二) 问题重述以1991年-2011年的城镇居民家庭人均
6、可支配收入y为因变量,选取城乡居民储蓄存款年底余额x1、城乡居民储蓄存款年增加额x2、国民总收入x3、职工基本就业情况x4、城镇居民家庭恩格尔系数(%)x5为自变量。(三)模型分析与建立多元线性回归模型1. 多元线性回归模型的一般形式 设随机变量与一般变量 的线性回归模型为 (4.1) 其中,是个未知参数,称为回归常数,称为回归系数。称为被解释变量(因变量),是个可以精确测量并控制的一般变量,称为解释变量(自变量)。 是随机误差,与一元线性回归一样,对随机误差项我们常假定 (4.2)称 (4.3)为理论回归方程。对一个实际问题,如果我们获得组观测数据,则线性回归模型(4.1)式可表示为 (4.
7、4)写成矩阵形式为 (4.5)其中 (4.6) 是一个阶矩阵,称为回归设计矩阵或资料矩阵。2. 多元线性回归模型的基本假定为了方便地进行模型的参数估计,对回归方程(4.4)式有如下一些基本假定:(1) 解释变量是确定性变量,不是随机变量,且要求。这里的,表明设计矩阵中的自变量列之间不相关,样本量的个数应大于解释变量的个数,是一满秩矩阵。(2) 随机误差项具有零均值和等方差,即 (4.7) 这个假定常称为高斯马尔柯夫条件。,假设观测值没有系统错误,随机误差项的平均值为0。随机误差项的协方差为0,表明随机误差项在不同的样本点之间是不相关的(在正态假定下即为独立的),不存在序列相关,并且有相同的精度
8、。(3)正态分布的假定条件为 (4.8) 对于多元线性回归的矩阵模型(4.5)式, 这个条件便可表示为 (4.9)由上述假定和多元正态分布的性质可知,随机变量服从维正态分布,回归模型(4.5)式的期望向量 (4.10) (4.11)因此 (4.12)回归参数的普通最小二乘估计 线性回归方程确定后的任务是利用已经收集到的样本数据,根据一定的统计拟合准则,对方程中的各个参数进行估计。普通最小二乘就是一种最为常见的统计拟合准则,在该准则下得到的回归参数的估计称为回归参数的普通最小二乘估计。对于(4.5)式表示的回归模型,所谓最小二乘法,就是寻找参数的估计值,使离差平方和达到极小,即寻找满足 (4.1
9、3) 依照(4.13)式求出的就称为回归参数的最小二乘估计。 (4.14)为经验回归方程。(四) 问题分析数据说明以1991年-2011年的城镇居民家庭人均可支配收入y为因变量,选取城乡居民储蓄存款年底余额x1、城乡居民储蓄存款年增加额x2、国民总收入x3、职工基本就业情况x4、城镇居民家庭恩格尔系数(%)x5为自变量。数据来源国家统计局网站统计年鉴。求解分析直接进入法模型汇总模型RR 方调整 R 方标准 估计的误差1.999a.999.999212.39403a. 预测变量: (常量), 家庭恩格尔系数, 年增加额, 就业情况, 国民总收入, 年底余额。可以看出调整后的决定系数,说明回归方程
10、的拟合优度比较好。Anovab模型平方和df均方FSig.1回归6.745E851.349E82990.552.000a残差676668.3531545111.224总计6.752E820a. 预测变量: (常量), 家庭恩格尔系数, 年增加额, 就业情况, 国民总收入, 年底余额。b. 因变量: 可支配收入方差分析表可以看出,F检验的检验值F=2990.552非常大,再看F检验的P值0.000,可知此回归方程高度显著,即做出5个自变量整体对因变量y产生显著线性影响的判断所犯错误的概率仅为0.000。系数a模型非标准化系数标准系数tSig.B 的 95.0% 置信区间B标准 误差试用版下限上限
11、1(常量)-4471.2783126.013-1.430.173-11134.2182191.662储蓄存款年底余额.004.008.060.457.654-.013.020储蓄存款年增加额.011.010.0271.084.296-.010.032国民总收入.036.005.8067.156.000.025.047就业情况.102.021.1274.817.000.057.147家庭恩格尔系数-7.24833.502-.008-.216.832-78.65664.161a. 因变量: 可支配收入此时得到的回归方程为:复决定系数为0.999,F-检验高度显著(F=2990.552,P=0.00
12、0),说明模型整体拟合效果不错。首先看t检验结果, 的t统计量及其相应的值就是上表第五列(Sig.)的结果。我们可以发现显著性水平时只有国民总收入()和就业情况()通过了显著性检验。尽管回归方程的显著性检验高度显著,但也会出现有某些自变量(甚至每个)对无显著影响的情况。接着看看回归系数的置信区间除了有国民总收入()系数95%置信区间0.025,0.047和就业情况()系数95%置信区间0.057,0.147不包含0,这也反映了回归系数的不合理。那么究竟是什么原因导致回归方程出现上述结果呢,我们猜想可能是下列原因导致的。(1) 异方差和自相关在回归模型的基本假设中,假定随机误差性具有相同的方差,
13、独立或不相关,即对于所有样本点,有但在建立实际问题的回归模型时,经常存在于此假设相违背的情况,一种是计量经济建模中常说的异方差性,即,当时另一种是自相关性,即,当时,异方差带来的问题:当一个回归问题存在异方差时,如果仍用普通最小二乘发估计位置参数,将引起不良后果,特别是最小二乘估计量不再具有最小方差的优良性,即最小二乘估计的有效性被破坏了。当存在异方差时,参数向量的方差大于在同方差条件下的方差,如果用普通最小二乘发估计参数,将出现低估的真是方差的情况,进一步将导致高估回归系数的t检验值,可能造成本来不显著的某些回归系数变成显著。这将给回归方程的应用效果带来一定影响。当存在异方差是,普通最小二乘
14、估计存在以下问题:1、 参数估计值虽然是无偏的,但不是最小方差线性无偏估计。2、 参数的显著性检验失效。3、 回归方程的应用效果极不理想。自相关带来的问题:当一个线性回归模型的随机误差项存在序列相关时,就违背了线性回归方程的基本假设,如果仍然直接用普通最小二乘法估计未知参数,将会产生严重后果,一般情况下,序列自相关性会带来下列问题:1、最小二乘估计量仍然是线性的和无偏的。2、最小二乘估计量不是有效的,即OLS估计量的方差不是最小的,估计量不是最优线性无偏估计量(BLUE)。3、OLS估计量的方差是有偏的。用来计算方差和OLS估计量标准误的公式会严重的低估真实的方差和标准误,从而导致t值变大,使
15、得某个系数表面上显著不为零,但事实却相反。4、t检验和F检验不是可信的。5、计算得到的误差方差=(残差平方和/自由度)是真实的有偏估计量,并且很可能低估了真实的。6、计算的也不能真实的反映实际。7、计算的预测方差和标准误差通常是无效的。(2)多重共线性 多元线性回归有一个基本假设,就是要求设计矩阵X的秩,即要求中的列向量之间线性无关。如果存在不全为零的个数,使得 (5.1)则自变量之间存在完全多重共线性。在实际问题中,完全的多重共线性并不多见,常见的是(5.1)式近似成立的情况,即存在不全为零的个数,使得 (5.2)当自变量存在(5.2)式的关系时,称自变量之间存在多重共线性(multi-co
16、llinearity),也称为复共线性。多重共线性到来的影响:(1) 完全共线性下参数估计量不存在(2) 近似共线性下OLS估计量非有效,多重共线性使参数估计值的方差增大,为方差扩大因子(Variance Inflation Factor, VIF)(3) 参数估计量经济含义不合理(4) 变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外(5) 模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。方程的异方差、自相关以及多重共线性诊断1.异方差诊断这里使用等级相关系数法检验,计算残差绝对值(见附录2)与自变量的相关性时采用Spearman等级相关系数,而不采用
17、Pearson简单相关系数,这是由于等级相关系数可以反映非线性相关的情况,而简单相关系数不能如实反映非线性相关情况。相关性Unstandardized Residual储蓄存款年底余额Unstandardized ResidualPearson 相关性1.023显著性(双侧).923N2121储蓄存款年底余额Pearson 相关性.0231显著性(双侧).923N2121残差绝对值与自变量储蓄存款年底余额的相关系数为=0.023相关性Unstandardized Residual储蓄存款年增加额Unstandardized ResidualPearson 相关性1.121显著性(双侧).601
18、N2121储蓄存款年增加额Pearson 相关性.1211显著性(双侧).601N2121残差绝对值与自变量储蓄存款年增加额的相关系数为=0.121相关性Unstandardized Residual国民总收入Unstandardized ResidualPearson 相关性1.047显著性(双侧).839N2121国民总收入Pearson 相关性.0471显著性(双侧).839N2121残差绝对值与自变量国民总收入的相关系数为=0.047相关性Unstandardized Residual就业情况Unstandardized ResidualPearson 相关性1-.281显著性(双侧)
19、.218N2121就业情况Pearson 相关性-.2811显著性(双侧).218N2121残差绝对值与自变量就业情况的相关系数为=-0.281相关性Unstandardized Residual家庭恩格尔系数Unstandardized ResidualPearson 相关性1.183显著性(双侧).427N2121家庭恩格尔系数Pearson 相关性.1831显著性(双侧).427N2121残差绝对值与自变量家庭恩格尔系数的相关系数为=-0.183因为在显著性水平下,每个值都大于,认为残差绝对值与自变量不显著相关,即认为不存在异方差。2.自相关诊断这里我们采用DW检验。可以用SPSS算出的
20、值,结果如下模型汇总b模型RR 方调整 R 方标准 估计的误差Durbin-Watson1.999a.999.999212.394031.892a. 预测变量: (常量), 家庭恩格尔系数, 储蓄存款年增加额, 就业情况, 国民总收入, 储蓄存款年底余额。b. 因变量: 可支配收入由表5我们可以得到DW=1.892,查DW表,n=21,k=6,显著性水平,得。由,可知残差是有自相关。消除自相关这里我们用迭代法消除自相关,需要求出和,其中 (5.3)(5.3)式中自相关系数是未知的,用来估计,计算出后,带入(5.3)式,计算变换因变量和变换自变量(见附录1),然后用变换得到自变量和因变量作普通最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 多元 线性 回归 模型 我国 城镇居民 家庭 人均 可支配 收入 分析 毕业论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。