六年级数学毕业复习数的运算知识点.doc
《六年级数学毕业复习数的运算知识点.doc》由会员分享,可在线阅读,更多相关《六年级数学毕业复习数的运算知识点.doc(10页珍藏版)》请在咨信网上搜索。
数的运算知识点 ※运算的意义 (一)整数四则运算 1整数加法:(把两个数合并成一个数)的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=(和-另一个加数) 2整数减法:已知(两个加数的和与其中的一个加数),求(另一个加数)的运算叫做减法。 例如: 18-6表示(已知两个因数的和是18,其中的一个加数是6,求另一个加数。) 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。 被减数-减数=差 被减数=(差+减数) 减数=(被减数-差) 3整数乘法:求(几个相同加数的和)的简便运算叫做乘法。 在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。 一个因数×一个因数 =积 一个因数=(积÷另一个因数) 4 整数除法:已知(两个因数的积与其中一个因数),求(另一个因数的运算)叫做除法。 例如: 18÷6表示(已知两个因数的积是18,其中的一个因数是6,求另一个因数。) 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 被除数÷除数=商 除数=(被除数÷商) 被除数=(商×除数) (二)小数四则运算 1. 小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2. 小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3. 小数乘法: 小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;例如,1.3×6表示(6个1.3的和是多少)或也可表示(1.3的6倍是多少?) 一个数乘小数的意义是求(这个数的十分之几、百分之几、千分之几……)是多少。 例如,16×0.13表示(求16的百分之十三是多少?) 4. 小数除法: 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (三)分数四则运算 1. 分数加法:分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。 2. 分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3. 分数乘法: 分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 一个数乘分数的意义:表示求这个数的(几分之几是多少)? 例如,15× 表示(15的是多少?) 5. 分数除法: 分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 ※运算法则 1. 整数加法计算法则: (相同数位)对齐,从(低)位加起,哪一位上的数相加满十,就向前一位进一。 2. 整数减法计算法则: 相同数位对齐,从(低)位减起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 3. 整数乘法计算法则: 先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就和哪一位对齐,然后把各次乘得的数加起来。 4. 整数除法计算法则: 先从被除数的(高位)除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于(除数)。 5. 小数乘法法则: 先按照(整数乘法的)计算法则算出积,再看因数中共有(几位小数),就从积的(右边)起数出几位,点上小数点;如果位数不够,(就用“0”补足)。 6. 小数除法计算法则: (1)除数是整数的小数除法计算法则: 先按照(整数除法)的法则去除,商的小数点要和(被除数的小数点)对齐;如果除到被除数的末尾仍有余数,就在余数后面(添“0”),再继续除。 (2) 除数是小数的除法计算法则: 先移动除数的小数点,使它变成(整数),除数的小数点向右移动几位,被除数的小数点也(向右移动几位)(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 7. 同分母分数加减法计算方法: 同分母分数相加减,只把(分子)相加减,(分母)不变。 8. 异分母分数加减法计算方法: 先(通分),然后按照同分母分数加减法的的法则进行计算。 9. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。 10. 分数乘法的计算法则: 分数乘整数,用(分数的分子和整数相乘的积)作分子,(分母)不变; 分数乘分数,用(分子相乘的积)作分子,(分母相乘的积)作分母。 11. 分数除法的计算法则: 除以一个数(0除外),等于乘以这个数的(倒数)。 如,5÷ =5×==30 ※运算定律 1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。 5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。 乘法分配律可以倒回来用:a×c+b×c = (a+b)×c 6. 减法的性质: (1)从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。如,10-2.3-7.7=10-(2.3+7.7)=10-10=0 (2) a-b-c=a-(b+c) 可以倒回来用:a-(b+c) = a-b-c,如,15.6-(5.6+3.8)= 15.6-5.6-3.8=10-3.8=6.2 7、除法的性质: (1)一个数里连续除以几个数,可以用这个数里除以所有除数的积,结果不变,即a÷b÷c=a÷(b×c) 。如,32.5÷4÷2.5=32.5÷(4×2.5)=32.5÷10=3.25 (2)a÷b÷c=a÷(b×c) 可以倒回来用:a÷(b×c)= a÷b÷c,如,18.3÷(1.83×50)=18.3÷1.83÷50=10÷50=0.2 ※ 运算顺序 1. 没有括号的混合运算: 同级运算从(左)往(右)依次运算;两级运算先算(乘、除)法,后算(加减)法。 2. 有括号的混合运算: 先算(小括号里面的),再算(中括号里面的),最后算(括号外面的)。 3. 第一级运算:(加法和减法)叫做第一级运算。第二级运算:(乘法和除法)叫做第二级运算。 4. 小数四则运算的运算顺序和整数四则运算顺序相同。 5. 分数四则运算的运算顺序和整数四则运算顺序相同。 四、运算的意义 (一)整数四则运算 1.整数加法: 把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 加数=和-另一个加数 2.整数减法: 已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。 被减数-减数=差 被减数=差+减数 减数=被减数-差 3.整数乘法: 求几个相同加数的和的简便运算叫做乘法。 在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。 因数×因数=积 因数=积÷另一个因数 4.整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 (二)小数四则运算 1.小数加法: 小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2.小数减法: 小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3.小数乘法: 小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 4.小数除法: 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 5.乘方(平方): 求几个相同因数的积的运算叫做乘方。例如33=3×3=32 (三)分数四则运算 1.分数加法: 分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2.分数减法: 分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3.分数乘法: 分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 4.乘积是1的两个数叫做互为倒数。 5.分数除法: 分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (四)运算定律 1.加法交换律: 两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。 2.加法结合律: 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变,即(a+b)+c=a+(b+c)。 3.乘法交换律: 两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 4.乘法结合律: 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。 5.乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。 6.减法的性质: 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。 (五)运算法则 1.整数加法计算法则: 相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2.整数减法计算法则: 相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 3.整数乘法计算法则: 先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 4.整数除法计算法则: 先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补”0”占位。每次除得的余数要小于除数。 5.小数乘法法则: 先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用”0”补足。 6.除数是整数的小数除法计算法则: 先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添”0”,再继续除。 7.除数是小数的除法计算法则: 先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补”0”),然后按照除数是整数的除法法则进行计算。 8.同分母分数加减法计算方法: 同分母分数相加减,只把分子相加减,分母不变。 9.异分母分数加减法计算方法: 先通分,然后按照同分母分数加减法的的法则进行计算。 10.带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。 11.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 12.分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。 (六)运算顺序 1.小数四则运算的运算顺序和整数四则运算顺序相同。 2.分数四则运算的运算顺序和整数四则运算顺序相同。 3.没有括号的混合运算: 同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。 4.有括号的混合运算: 先算小括号里面的,再算中括号里面的,最后算括号外面的。 5.第一级运算: 加法和减法叫做第一级运算。 6.第二级运算: 乘法和除法叫做第二级运算。 北师大版小学六下总复习数与代数2.1运算的意义、估算同步练习(答案)资料介绍: 一、引导记忆题(51分) 1.四则混合运算中,加法和减法叫作第( )运算,乘法和除法叫作第( )运算,在一个没有括号的算式里,如果只有第一级或第二级运算,应按( )的顺序计算,如果两级运算都有,应先算( )运算,再算( )运算,如果有括号,应先算( )。 2.两个自然数相除,商是7,余数是8,除数至少是( ),如果除数是14,被除数是( )。 3.把315+453=768改写成两道减法算式分别是( )和( )。 4.把2000-350=1650改写成一道加法算式是( ),一道减法算式是( )。 5.估算2793-252吋,先求出2793的近似数( ),252的近似数( ),再把这两个近似数( ),得( )。 6.8÷ 表示( )。 二、运用练习题(49分) 1.直接写出得数。(18分) 138+67= 700-56= 5×34= 13-0.8= 2.3+5.68= 0÷4.21= 2.用竖式计算下面各题。(20分) 4.6×9.8= 587.1÷0.57= 74.5-8.95= 5678+2351= 3.解决问题。(11分) (1)甲数除以乙数的商是76,余数是3,现将被除数和除数都扩大到原来的10倍,那么商是多少?余数是多少?(6分) (2)15.5与12.75的差乘4.4与1.6的和,积是多少?(5分) · 上一篇小学教育: 北师大版小学六下总复习数与代数1.3常见的量同步练习(答案) · 下一篇小学教育: 北师大版小学六下总复习数与 一、填空。 1、(1)3.8-1.45表示的意义是 ; (2)4÷表示的意义是 ; (3)10×表示的意义是 ;(4)×10表示的意义是 。 2、加数 +加数 =和 一个加数 = 被减数 = 被减数-减数 =差 减数 = 因数 ×因数 =积 一个因数 = 被除数 = 被除数÷除数 =商 除数 = 3、在 上填上< 、= 、> 。 (1)A× = B×,那么A B;(2)A÷ = B÷,那么A B。 (3)8× 8 8× 8 8÷ 8 8÷ 8×1 4、如果 = 6,那么,2X = ;如果 = 5,那么,4X = 。 5、被减数 — (差 + 减数)= 被除数 ÷ (除数 × 商)= 二、判断。 1、分数除法的意义与整数除法的意义相同。 ( ) 2、分数乘法的意义与整数乘法的意义相同。 ( ) 三、列式计算。 1、05中,减去220的,差是多少? 2、0.6的和除以这两个数的差,商是多少? 3、1.5的商,加上3,再乘以3,积是多少? 4、是多少? 5、18的是多少? 6、一个数的25%是16,这个数的是多少? 7、 比48的少4.8的数是多少? 8、 2.5加上多少等于3.75? 一、填空: 1、根据2516÷68=37,直接写出下列各题得数: 251.6÷6.8=( ) 25.16÷0.37=( ) 0.068×3.7=( ) 2、在( )内填入适当的运算符号或数据: 1)0.43( )1000=430 2.46×( )=24.6 12.5( )100=0.125 0.03×( )=30 2)( )×0.3×8.54=0 64×125=( )×8×125 4.375-(1 + )=( )-1 3.87×18-38.7×0.8=( )×(18-8) ( )×0.78+0.22×( )=36.4×(0.78+0.22) 63.63÷( )÷0.9=6363÷63 3) ×( )=2 ( )÷3 =2 1 ×( )=( )×1 =1 ×( ) ( )÷ = ÷( )=( )÷1 6 ×( )=6 ÷( ) 4 ×( )=( )÷4 3、 的分数单位与0.7的小数单位之和是( )。 4、比较□两边的算式,选择一个合适的符号(>、<、=)填在 内: 1)3.4×2.5□3.4 9 ÷1.2□9 × □ 0.1×10□0.1÷0.1 8 ÷ □( +8)×1.25 14 ×15□14×15+ ÷ ( +2.4)×0.25□ +2.4×0.25 8 +1.66- □8.8+1 -0.375 5、两数相除,商3余4,如果把被除数、除数、商及余数相加,和是43,被除数是( ),除数是( )。 6、有一个整数与它自己相加、相减、相乘、相除,把所得的和、差、积、商加起来等于36,这个数是( )。 二、判断: 1)两个数相乘的积是1,这两个数一定互为倒数。 ( ) 2)100÷0.25=0.04 ( ) 3)3 ÷ ÷3 ÷ =3 ÷( + )=3 ( ) 4)3200÷(800÷17)=3200÷800÷17 ( ) 5) ÷ = = ( ) 6)0.25×404=0.25×400×4 ( ) 7)0.54÷0.24=54÷24=2.25 ( ) 8)1 ÷0.24= = ( ) 9) ÷ =4÷9= ( ) 四 运算的意义 (一)整数四则运算 1整数加法: 把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和-另一个加数 2整数减法: 已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。 3整数乘法: 求几个相同加数的和的简便运算叫做乘法。 在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。 一个因数×一个因数=积 一个因数=积÷另一个因数 4 整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 (二)小数四则运算 1.小数加法: 小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2.小数减法: 小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3.小数乘法: 小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 4.小数除法: 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 5.乘方: 求几个相同因数的积的运算叫做乘方。例如3×3 =32 (三)分数四则运算 1.分数加法: 分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2.分数减法: 分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3.分数乘法: 分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 4.乘积是1的两个数叫做互为倒数。 5.分数除法: 分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (四)运算定律 1.加法交换律: 两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。 2.加法结合律: 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。 3.乘法交换律: 两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 4.乘法结合律: 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。 5.乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。 6.减法的性质: 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。 (五)运算法则 1.整数加法计算法则: 相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2.整数减法计算法则: 相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 3.整数乘法计算法则: 先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 4.整数除法计算法则: 先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。 5.小数乘法法则: 先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。 6.除数是整数的小数除法计算法则: 先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。 7.除数是小数的除法计算法则: 先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 8.同分母分数加减法计算方法: 同分母分数相加减,只把分子相加减,分母不变。 9.异分母分数加减法计算方法: 先通分,然后按照同分母分数加减法的的法则进行计算。 10.带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。 11.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 12.分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。 (六)运算顺序 1.小数四则运算的运算顺序和整数四则运算顺序相同。 2.分数四则运算的运算顺序和整数四则运算顺序相同。 3.没有括号的混合运算: 同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。 4.有括号的混合运算: 先算小括号里面的,再算中括号里面的,最后算括号外面的。 5.第一级运算: 加法和减法叫做第一级运算。 6.第二级运算: 乘法和除法叫做第二级运算。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 数学 毕业 复习 运算 知识点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文