高考理科数学试题全国卷2及解析.doc
《高考理科数学试题全国卷2及解析.doc》由会员分享,可在线阅读,更多相关《高考理科数学试题全国卷2及解析.doc(15页珍藏版)》请在咨信网上搜索。
2016年全国高考理科数学试题全国卷2 第Ⅰ卷 一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知在复平面内对应的点在第四象限,则实数m的取值范围是 (A)(B)(C)(D) (2)已知集合,,则( ) (A) (B) (C) (D) (3)已知向量,且,则m=( ) (A)-8 (B)-6 (C)6 (D)8 (4)圆的圆心到直线的距离为1,则a=( ) (A) (B) (C) (D)2 (5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) (A)24 (B)18 (C)12 (D)9 (6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) (A) (B) (C) (D) (7)若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( ) (A) (B) (C) (D) (8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的,依次输入的为2,2,5,则输出的( ) (A)7 (B)12 (C)17 (D)34 (9)若,则( ) (A) (B) (C) (D) (10)从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为 (A) (B) (C) (D) (11)已知是双曲线的左,右焦点,点在上,与轴垂直,,则E的离心率为( ) (A) (B) (C) (D)2 (12)已知函数满足,若函数与图像的交点为则( ) (A)0 (B) (C) (D) 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分 (13) 的内角的对边分别为,若,,,则 . (14) 是两个平面,是两条直线,有下列四个命题: (1)如果,那么.[] (2)如果,那么. (3)如果,那么. (4)如果,那么与所成的角和与所成的角相等. 其中正确的命题有 ..(填写所有正确命题的编号) (15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . (16)若直线是曲线的切线,也是曲线的切线,则 . 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过的最大整数,如. (Ⅰ)求; (Ⅱ)求数列的前1 000项和. 18.(本题满分12分) 某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:[] 一年内出险次数 0 1 2[] 3 4 5 概率 0.30 0.15 0.20 0.20 0.10 0. 05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率; (Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分)如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,. (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值. 20.(本小题满分12分) 已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,. (Ⅰ)当时,求的面积; (Ⅱ)当时,求的取值范围. (21)(本小题满分12分) (Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为. (Ⅰ) 证明:四点共圆; (Ⅱ)若,为的中点,求四边形的 面积. (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的方程为. (Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程; (Ⅱ)直线的参数方程是(为参数), 与交于两点,,求的斜率. (24)(本小题满分10分)选修4—5:不等式选讲 已知函数,为不等式的解集. (Ⅰ)求; (Ⅱ)证明:当时,. 2016年全国高考理科数学试题全国卷2 参考答案 (1)【解析】A ∴,,∴,故选A. (2)【解析】C , ∴,∴, 故选C. (3)【解析】D , ∵,∴ 解得, 故选D. (4)【解析】A 圆化为标准方程为:, 故圆心为,,解得, 故选A. (5)【解析】B 有种走法,有种走法,由乘法原理知,共种走法 故选B. 【解析二】:由题意,小明从街道的E处出发到F处最短有条路,再从F处到G处最短共有条路,则小明到老年公寓可以选择的最短路径条数为条,故选B. (6)【解析】C 几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为. 由图得,,由勾股定理得:, , 故选C. (7)【解析】B 由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B. (8)【解析】C 第一次运算:, 第二次运算:, 第三次运算:, 故选C. (9)【解析】D ∵,, 故选D. 解法二:对展开后直接平方 解法三:换元法 (10)【解析】C 由题意得:在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中 由几何概型概率计算公式知,∴,故选C. (11)【解析】A 离心率,由正弦定理得. 故选A. (12)【解析】B 由得关于对称, 而也关于对称, ∴对于每一组对称点 , ∴,故选B. 13.【解析】 ∵,, ,, , 由正弦定理得:解得. (14)【解析】②③④ 对于①,,则的位置关系无法确定,故错误;对于②,因为,所以过直线作平面与平面相交于直线,则,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④. (15)【解析】 由题意得:丙不拿(2,3), 若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3), (16)【解析】 的切线为:(设切点横坐标为) 的切线为: ∴ 解得 ∴. 17.【解析】⑴设的公差为,, ∴,∴,∴. ∴,,. ⑵记的前项和为,则 . 当时,; 当时,; 当时,; 当时,. ∴. 18.⑴设续保人本年度的保费高于基本保费为事件, . ⑵设续保人保费比基本保费高出为事件, . ⑶解:设本年度所交保费为随机变量. 平均保费 , ∴平均保费与基本保费比值为. 19.【解析】⑴证明:∵, ∴, ∴. ∵四边形为菱形, ∴, ∴, ∴, ∴. ∵, ∴; 又,, ∴, ∴, ∴, ∴, ∴. 又∵, ∴面. ⑵建立如图坐标系. ,,,, ,,, 设面法向量, 由得,取, ∴. 同理可得面的法向量, ∴, ∴ 20.【解析】 ⑴当时,椭圆E的方程为,A点坐标为, 则直线AM的方程为. 联立并整理得, 解得或,则 因为,所以 因为,, 所以,整理得, 无实根,所以. 所以的面积为. ⑵直线AM的方程为, 联立并整理得, 解得或, 所以 所以 因为 所以,整理得,. 因为椭圆E的焦点在x轴,所以,即,整理得 解得. (21)【解析】⑴证明: ∵当时, ∴在上单调递增 ∴时, ∴ ⑵ 由(1)知,当时,的值域为,只有一解. 使得, 当时,单调减;当时,单调增 记,在时,,∴单调递增 ∴. (22)【解析】(Ⅰ)证明:∵ ∴ ∴ ∵, ∴ ∴ ∴ ∴ ∴. ∴B,C,G,F四点共圆. (Ⅱ)∵E为AD中点,, ∴, ∴在中,, 连接,, ∴. (23)解:⑴整理圆的方程得, 由可知圆的极坐标方程为. ⑵记直线的斜率为,则直线的方程为, 由垂径定理及点到直线距离公式知:, 即,整理得,则. (24)【解析】解:⑴当时,,若; 当时,恒成立; 当时,,若,. 综上可得,. ⑵当时,有, 即, 则, 则, 即, 证毕. 15- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 理科 数学试题 全国卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文