高考文科数学试题全国卷3.doc
《高考文科数学试题全国卷3.doc》由会员分享,可在线阅读,更多相关《高考文科数学试题全国卷3.doc(24页珍藏版)》请在咨信网上搜索。
2016年全国高考文科数学试题(全国卷3) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则= (A) (B) (C) (D) (2)若,则= (A)1 (B) (C) (D) (3)已知向量=(,),=(,),则∠ABC= (A)30° (B)45° (C)60° (D)120° (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 (A)各月的平均最低气温都在0℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20℃的月份有5个 (5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 (A) (B) (C) (D) (6)若,则cos2θ= (A) (B) (C) (D) (7)已知a=,b=,c=则 (A)b<a<c (B) a<b<c (C) b<c<a (D) c<a<b (8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n= (A)3 (B)4 (C)5 (D)6 (9)在△ABC中,B=,BC边上的高等于BC,则= (A) (B) (C) (D) (10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为 (A) (B) (C)90 (D)81 (11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是 (A) (B) (C) (D) (12)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为 (A) (B) (C) (D) 第II卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)设x,y满足约束条件则z=2x+3y–5的最小值为______. (14)函数y=sin x–cosx的图像可由函数y=2sin x的图像至少向右平移______个单位长度得到. (15)已知直线l:与圆x2+y2=12交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|=______. (16)已知f(x)为偶函数,当时,,则曲线y= f(x)在点(1,2)处的切线方程式_____________________________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知各项都为正数的数列满足,. (I)求; (II)求的通项公式. (18)(本小题满分12分) 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明; (Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:,,,≈2.646. 参考公式: 回归方程中斜率和截距的最小二乘估计公式分别为: (19)(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. (I)证明MN∥平面PAB; (II)求四面体N-BCM的体积. (20)(本小题满分12分) 已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点. (Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (21)(本小题满分12分) 设函数. (I)讨论的单调性; (II)证明当时,; (III)设,证明当时,. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4—1:几何证明选讲 如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。 (Ⅰ)若∠PFB=2∠PCD,求∠PCD的大小; (Ⅱ)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD。 (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,曲线C1的参数方程为(为参数)。以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin()=. (I)写出C1的普通方程和C2的直角坐标方程; (II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标. (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=∣2x-a∣+a. (I)当a=2时,求不等式f(x)≤6的解集; (II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+g(x)≥3,求a的取值范围。 2016年全国高考文科数学试题解析(全国卷3) 第Ⅰ卷 一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则= (A) (B) (C) (D) 【答案】C 【解析】 试题分析:依据补集的定义,从集合中去掉集合,剩下的四个元素为,故,故应选答案。 (2)若,则= (A)1 (B) (C) (D) 【答案】D 【解析】 试题分析:因,则其共轭复数为,其模为,故,应选答案。 (3)已知向量=(,),=(,),则∠ABC= (A)30° (B)45° (C)60° (D)120° 【答案】A (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 (A)各月的平均最低气温都在0℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20℃的月份有5个 【答案】D 【解析】 试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定是不正确的,因为从图中可以看出:平均最高气温高于20只有7、8两个月份,故应选答案。 (5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 (A) (B) (C) (D) 【答案】C 【解析】 试题分析:前2位共有种可能,其中只有1种是正确的密码,因此所求概率为.故选C. (6)若tanθ= ,则cos2θ= (A) (B) (C) (D) 【答案】D 【解析】 试题分析:.故选D. (7)已知,则 (A)b<a<c (B) a < b <c (C) b <c<a (D) c<a< b 【答案】A 【解析】 试题分析:,,又函数在上是增函数,所以.故选A. (8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n= (A)3 (B)4 (C)5 (D)6 【答案】B (9)在中 ,B= (A) (B) (C) (D) 【答案】D 【解析】 试题分析:由题意得,, ∴,, ∴,故选D. (10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为 (A) (B) (C)90 (D)81 【答案】B 【解析】 试题分析:由题意得,该几何体为一四棱柱,∴表面积为,故选B. (11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是 (A) (B)(C)(D) 【答案】B (12)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为 (A) (B) (C) (D) 【答案】A 【解析】 试题分析: 由题意得,,,根据对称性,不妨,设, ∴,,∴直线BM:,又∵直线BM经过OE中点, ∴,故选A. 第II卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)设x,y满足约束条件 则z=2x+3y–5的最小值为______. 【答案】-10 【解析】 试题分析:可行域为一个三角形ABC及其内部,其中,直线过点B时取最小值-10 (14)函数y=sin x–cos x的图像可由函数y=2sin x的图像至少向右平移______个单位长度得到. 【答案】 【解析】 试题分析:,所以至少向右平移 (15)已知直线l:与圆x2+y2=12交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|= . 【答案】3 【解析】 试题分析:由题意得:,因此 (16)已知f(x)为偶函数,当 时,,则曲线y= f(x)在点(1,2)处的切线方程式_____________________________. 【答案】 【解析】 试题分析: 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知各项都为正数的数列满足,. (I)求; (II)求的通项公式. 【答案】(1);(2). 【解析】 试题分析: (18)(本小题满分12分) 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明; (Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:,,,≈2.646. 参考公式: 回归方程 中斜率和截距的最小二乘估计公式分别为: 【答案】(1)可用线性回归模型拟合变量与的关系.(2)我们可以预测2016年我国生活垃圾无害化处理 亿吨. 【解析】 试题分析:(1)变量与的相关系数 , 又,,,,, 所以 , 故可用线性回归模型拟合变量与的关系. (2),,所以 , , (19)(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. (I)证明MN∥平面PAB; (II)求四面体N-BCM的体积. 【答案】(I)见解析;(II)。 【解析】 试题分析:(1)取PB中点Q,连接AQ、NQ, ∵N是PC中点,NQ//BC,且NQ=BC, 又,且, ∴,且. ∴是平行四边形. ∴. 又平面,平面, ∴平面. (2)由(1)平面ABCD. ∴. ∴. (20)(本小题满分12分) 已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点. (Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. 【答案】(I)见解析;(II) 【解析】 试题分析: (Ⅰ)连接RF,PF, 由AP=AF,BQ=BF及AP//BQ, ∴AR//FQ. (Ⅱ)设, ,准线为, , 设直线与轴交点为, , ∵,∴,∴,即. 设中点为,由得, 又, ∴,即. ∴中点轨迹方程为. (21)(本小题满分12分) 设函数. (I)讨论的单调性; (II)证明当时,; (III)设,证明当时,. 【答案】(I);(II)(III)见解析。 【解析】 试题分析: 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4—1:几何证明选讲 如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。 (Ⅰ)若∠PFB=2∠PCD,求∠PCD的大小; (Ⅱ)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD。 【答案】(I)60°(II)见解析 【解析】 试题分析: (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,曲线C1的参数方程为(为参数)。以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin()=. (I)写出C1的普通方程和C2的直角坐标方程; (II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标. 【答案】 【解析】 试题分析: (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=∣2x-a∣+a. (I)当a=2时,求不等式f(x) ≤6的解集; (II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+ g(x) ≥3,求a的取值范围。 【答案】(I) ;(II) 【解析】 试题分析:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学试题 全国卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文