2014年上海市高考数学试卷(理科)答案与解析.doc
《2014年上海市高考数学试卷(理科)答案与解析.doc》由会员分享,可在线阅读,更多相关《2014年上海市高考数学试卷(理科)答案与解析.doc(15页珍藏版)》请在咨信网上搜索。
2014年上海市高考数学试卷(理科) 参考答案与试题解析 一、填空题(共14题,满分56分) 1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是 . 考点: 二倍角的余弦;三角函数的周期性及其求法.菁优网版权所有 专题: 三角函数的求值. 分析: 由二倍角的余弦公式化简,可得其周期. 解答: 解:y=1﹣2cos2(2x) =﹣[2cos2(2x)﹣1] =﹣cos4x, ∴函数的最小正周期为T== 故答案为: 点评: 本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题. 2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 . 考点: 复数代数形式的乘除运算.菁优网版权所有 专题: 数系的扩充和复数. 分析: 把复数代入表达式,利用复数代数形式的混合运算化简求解即可. 解答: 解:复数z=1+2i,其中i是虚数单位, 则(z+)•= =(1+2i)(1﹣2i)+1 =1﹣4i2+1 =2+4 =6. 故答案为:6 点评: 本题考查复数代数形式的混合运算,基本知识的考查. 3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为 x=﹣2 . 考点: 椭圆的简单性质.菁优网版权所有 专题: 圆锥曲线的定义、性质与方程. 分析: 由题设中的条件y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程 解答: 解:由题意椭圆+=1,故它的右焦点坐标是(2,0), 又y2=2px(p>0)的焦点与椭圆+=1的右焦点重合, 故得p=4, ∴抛物线的准线方程为x=﹣=﹣2. 故答案为:x=﹣2 点评: 本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题. 4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为 (﹣∞,2] . 考点: 分段函数的应用;真题集萃.菁优网版权所有 专题: 分类讨论;函数的性质及应用. 分析: 可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围. 解答: 解:当a>2时,f(2)=2≠4,不合题意; 当a=2时,f(2)=22=4,符合题意; 当a<2时,f(2)=22=4,符合题意; ∴a≤2, 故答案为:(﹣∞,2]. 点评: 本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题. 5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为 2 . 考点: 基本不等式.菁优网版权所有 专题: 不等式的解法及应用. 分析: 由已知可得y=,代入要求的式子,由基本不等式可得. 解答: 解:∵xy=1, ∴y= ∴x2+2y2=x2+≥2=2, 当且仅当x2=,即x=±时取等号, 故答案为:2 点评: 本题考查基本不等式,属基础题. 6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 arccos (结果用反三角函数值表示). 考点: 旋转体(圆柱、圆锥、圆台).菁优网版权所有 专题: 空间位置关系与距离. 分析: 由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角. 解答: 解:设圆锥母线与轴所成角为θ, ∵圆锥的侧面积是底面积的3倍, ∴==3, 即圆锥的母线是圆锥底面半径的3倍, 故圆锥的轴截面如下图所示: 则cosθ==, ∴θ=arccos, 故答案为:arccos 点评: 本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键. 7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是 . 考点: 简单曲线的极坐标方程.菁优网版权所有 专题: 计算题;坐标系和参数方程. 分析: 由题意,θ=0,可得C与极轴的交点到极点的距离. 解答: 解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1, ∴C与极轴的交点到极点的距离是ρ=. 故答案为:. 点评: 正确理解C与极轴的交点到极点的距离是解题的关键. 8.(4分)(2014•上海)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q= . 考点: 极限及其运算.菁优网版权所有 专题: 等差数列与等比数列. 分析: 由已知条件推导出a1=,由此能求出q的值. 解答: 解:∵无穷等比数列{an}的公比为q, a1=(a3+a4+…an) =(﹣a1﹣a1q) =, ∴q2+q﹣1=0, 解得q=或q=(舍). 故答案为:. 点评: 本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用. 9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是 (0,1) . 考点: 指、对数不等式的解法;其他不等式的解法.菁优网版权所有 专题: 不等式的解法及应用. 分析: 直接利用已知条件转化不等式求解即可. 解答: 解:f(x)=﹣,若满足f(x)<0, 即<, ∴, ∵y=是增函数, ∴的解集为:(0,1). 故答案为:(0,1). 点评: 本题考查指数不等式的解法,函数的单调性的应用,考查计算能力. 10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示). 考点: 古典概型及其概率计算公式.菁优网版权所有 专题: 概率与统计. 分析: 要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况, 再求选择的3天恰好为连续3天的情况,即可得到答案. 解答: 解:在未来的连续10天中随机选择3天共有种情况, 其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6), (5,6,7),(6,7,8),(7,8,9),(8,9,10), ∴选择的3天恰好为连续3天的概率是, 故答案为:. 点评: 本题考查古典概型以及概率计算公式,属基础题. 11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 . 考点: 集合的相等.菁优网版权所有 专题: 集合. 分析: 根据集合相等的条件,得到元素关系,即可得到结论. 解答: 解:根据集合相等的条件可知,若{a,b}={a2,b2}, 则 ①或 ②, 由①得, ∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件. 若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a, ∵互异的复数a,b, ∴b﹣a≠0,即a+b=﹣1, 故答案为:﹣1. 点评: 本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论. 12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3= . 考点: 正弦函数的图象;两角和与差的正弦函数.菁优网版权所有 专题: 三角函数的图像与性质. 分析: 先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可. 解答: 解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a, 如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点, 令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+, ∴此时x1=0,x2=,x3=2π, ∴x1+x2+x3=0++2π=. 故答案为: 点评: 本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题. 13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为 0.2 . 考点: 离散型随机变量的期望与方差.菁优网版权所有 专题: 概率与统计. 分析: 设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果. 解答: 解:设小白得5分的概率至少为x, 则由题意知小白得1,2,3,4分的概率为1﹣x, ∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分, E(ξ)=4.2, ∴4(1﹣x)+5x=4.2, 解得x=0.2. 故答案为:0.2. 点评: 本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用. 14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为 [2,3] . 考点: 直线与圆的位置关系.菁优网版权所有 专题: 直线与圆. 分析: 通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可. 解答: 解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0], 对于点A(m,0),存在C上的点P和l上的Q使得+=, 说明A是PQ的中点,Q的横坐标x=6, ∴m=∈[2,3]. 故答案为:[2,3]. 点评: 本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分 15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 考点: 必要条件、充分条件与充要条件的判断.菁优网版权所有 专题: 简易逻辑. 分析: 根据不等式的性质,利用充分条件和必要条件的定义进行判定. 解答: 解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立, 若a>2且b>2,则必有a+b>4,即必要性成立, 故“a+b>4”是“a>2且b>2”的必要不充分条件, 故选:B. 点评: 本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础. 16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为( ) A. 1 B. 2 C. 3 D. 4 考点: 平面向量数量积的运算.菁优网版权所有 专题: 计算题;平面向量及应用. 分析: 建立空适当的间直角坐标系,利用坐标计算可得答案. 解答: 解:=, 则•=()=||2+, ∵, ∴•=||2=1, ∴•(i=1,2,…,8)的不同值的个数为1, 故选A. 点评: 本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段. 17.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是( ) A. 无论k,P1,P2如何,总是无解 B. 无论k,P1,P2如何,总有唯一解 C. 存在k,P1,P2,使之恰有两解 D. 存在k,P1,P2,使之有无穷多解 考点: 一次函数的性质与图象.菁优网版权所有 专题: 函数的性质及应用;直线与圆. 分析: 判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可. 解答: 解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在, ∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1 , ①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1, 即(a1﹣a2)x=b2﹣b1. ∴方程组有唯一解. 故选:B. 点评: 本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解额指数的应用. 18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为( ) A. [﹣1,2] B. [﹣1,0] C. [1,2] D. [0,2] 考点: 分段函数的应用.菁优网版权所有 专题: 函数的性质及应用. 分析: 当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决. 解答: 解;当a<0时,显然f(0)不是f(x)的最小值, 当a≥0时,f(0)=a2, 由题意得:a2≤x++a, 解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2, ∴0≤a≤2, 故选:D. 点评: 本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题. 三、解答题(共5题,满分72分) 19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V. 考点: 棱柱、棱锥、棱台的体积.菁优网版权所有 专题: 空间位置关系与距离. 分析: 利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积. 解答: 解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°, ∴∠ABP1=∠BAP1=∠CBP2=60°, ∴∠P1=60°,同理∠P2=∠P3=60°, ∴△P1P2P3是等边三角形,P﹣ABC是正四面体, ∴△P1P2P3的边长为4, VP﹣ABC== 点评: 本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法. 20.(14分)(2014•上海)设常数a≥0,函数f(x)=. (1)若a=4,求函数y=f(x)的反函数y=f﹣1(x); (2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由. 考点: 反函数;函数奇偶性的判断.菁优网版权所有 专题: 函数的性质及应用. 分析: (1)根据反函数的定义,即可求出, (2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决. 解答: 解:(1)∵a=4, ∴ ∴, ∴, ∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞). (2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立, ∴=,整理可得a(2x﹣2﹣x)=0. ∵2x﹣2﹣x不恒为0, ∴a=0,此时f(x)=1,x∈R,满足条件; 若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立, ∴=﹣,整理可得a2﹣1=0, ∴a=±1, ∵a≥0, ∴a=1, 此时f(x)=,满足条件; 综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数. 点评: 本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题. 21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β. (1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)? (2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米). 考点: 解三角形的实际应用.菁优网版权所有 专题: 解三角形. 分析: (1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论. 解答: 解:(1)设CD的长为x米,则tanα=,tanβ=, ∵0, ∴tanα≥tan2β>0, ∴tan, 即=, 解得0≈28.28, 即CD的长至多为28.28米. (2)设DB=a,DA=b,CD=m, 则∠ADB=180°﹣α﹣β=123.43°, 由正弦定理得, 即a=, ∴m=≈26.93, 答:CD的长为26.93米. 点评: 本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键. 22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线. (1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔; (2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围; (3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线. 考点: 直线的一般式方程;真题集萃.菁优网版权所有 专题: 计算题;直线与圆. 分析: (1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论. (2)联立直线y=kx与曲线x2﹣4y2=1可得 (1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围. (3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线. 解答: (1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0, ∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔. (2)解:联立直线y=kx与曲线x2﹣4y2=1可得 (1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0, ∴k≤﹣,或 k≥. 曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔. (3)证明:设点M(x,y),则 •|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①. y轴为x=0,显然与方程①联立无解. 又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有 η=1×(﹣1)=﹣1<0, 故x=0是一条分隔线. 若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1, 令f(x)=[x2+(kx﹣2)2]x2﹣1, ∵f(0)f(2)<0, ∴f(x)=0有实数解,即y=kx与E有公共点, ∴y=kx不是E的分隔线. ∴通过原点的直线中,有且仅有一条直线是E的分隔线. 点评: 本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题. 23.(16分)(2014•上海)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1. (1)若a2=2,a3=x,a4=9,求x的取值范围; (2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围. (3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差. 考点: 等比数列的性质;数列的求和.菁优网版权所有 专题: 等差数列与等比数列. 分析: (1)依题意:,又将已知代入求出x的范围; (2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差. 解答: 解:(1)依题意:, ∴;又 ∴3≤x≤27, 综上可得:3≤x≤6 (2)由已知得,,, ∴, 当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立. 当1<q≤3时,,Sn≤Sn+1≤3Sn,即, ∴ 不等式 ∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0对于不等式qn+1﹣3qn+2≤0,令n=1, 得q2﹣3q+2≤0, 解得1≤q≤2,又当1≤q≤2,q﹣3<0, ∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立, ∴1<q≤2, 当时, ,Sn≤Sn+1≤3Sn,即, ∴此不等式即, 3q﹣1>0,q﹣3<0, 3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0, qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0 ∴时,不等式恒成立, 上,q的取值范围为:. (3)设a1,a2,…ak的公差为d.由,且a1=1, 得 即 当n=1时,﹣≤d≤2; 当n=2,3,…,k﹣1时,由,得d≥, 所以d≥, 所以1000=k,即k2﹣2000k+1000≤0, 得k≤1999 所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为﹣. 点评: 本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 上海市 高考 数学试卷 理科 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文