黑龙江省大兴安岭漠河县高中2022-2023学年高一上数学期末达标检测试题含解析.doc
《黑龙江省大兴安岭漠河县高中2022-2023学年高一上数学期末达标检测试题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省大兴安岭漠河县高中2022-2023学年高一上数学期末达标检测试题含解析.doc(14页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.函数的一个零点所在的区间是( ) A. B. C. D. 2.已知函数,则等于 A.2 B.4 C.1 D. 3.若不等式的解集为,那么不等式的解集为() A. B.或 C. D.或 4.已知角的终边与单位圆相交于点,则=( ) A. B. C. D. 5.圆与圆的位置关系为() A.相离 B.相交 C.外切 D.内切 6.半径为,圆心角为的弧长为() A. B. C. D. 7.设函数,若关于的方程有四个不同的解,且,则的取值范围是( ) A. B. C. D. 8.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是() A. B. C. D. 9.若,则下列不等式中成立的是() A. B. C. D. 10.已知向量,满足,,且与的夹角为,则() A. B. C. D. 11.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾束,中等稻禾束,下等稻禾束,各等稻禾总数都不足斗.如果将束上等稻禾加上束中等稻禾,或者将束中等稻禾加上束下等稻禾,或者将束下等稻禾加上束上等稻禾,则刚好都满斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的束上等稻禾是多少斗?() A. B. C. D. 12.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是 A.点P在内部 B.点P在外部 C.点P在线段AC上 D.点P在直线AB上 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______ 14.已知一个扇形的面积为,半径为,则其圆心角为___________. 15.化简=________ 16.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.已知定义域为的函数是奇函数 (Ⅰ)求值; (Ⅱ)判断并证明该函数在定义域上的单调性; (Ⅲ)若对任意的,不等式恒成立,求实数的取值范围; (Ⅳ)设关于的函数有零点,求实数的取值范围. 18.集合A={x|},B={x|}; (1)用区间表示集合A; (2)若a>0,b为(t>2)的最小值,求集合B; (3)若b<0,A∩B=A,求a、b的取值范围. 19.已知函数,. (1)求的最小正周期和最大值; (2)设,求函数的单调区间. 20.记. (1)化简 ; (2)若为第二象限角,且,求的值. 21.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点 (1)当A在OB的反向延长线上时,求tanα; (2)当OA⊥OB时,求sin2α. 22.已知函数 (1)请在给定的坐标系中画出此函数的图象; (2)写出此函数的定义域及单调区间,并写出值域. 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】先求出根据零点存在性定理得解. 【详解】由题得, , 所以 所以函数一个零点所在的区间是. 故选B 【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题. 2、A 【解析】由题设有,所以,选A 3、C 【解析】根据题意,直接求解即可. 【详解】根据题意,由,得, 因为不等式的解集为, 所以由,知,解得, 故不等式的解集为. 故选:C. 4、C 【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可. 【详解】角的终边与单位圆相交于点,故, 所以, 故. 故选:C. 5、A 【解析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系. 【详解】圆,圆心,半径为; ,圆心,半径为; 两圆圆心距,所以相离. 故选:A. 6、D 【解析】利用弧长公式即可得出 【详解】解:, 弧长cm 故选:D 7、D 【解析】由题意,根据图象得到,,,,, 推出.令,,而函数.即可求解. 【详解】 【点睛】方法点睛: 已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 8、B 【解析】依次执行循坏结构,验证输出结果即可. 【详解】根据程序框图,运行结构如下: 第一次循环,, 第二次循环,, 第三次循环,, 此时退出循环,故应填:. 故选:B. 9、C 【解析】根据函数的单调性,即可判断选项A是否正确;根据函数在上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项C,D是否正确. 【详解】因为,所以,又函数在上单调递增,所以,故A错误; 因为,函数在上单调递减,所以,故B错误; 因为,所以,又,所以,故C正确; 因为,两边同时除以,可知,故D错误. 故选:C. 10、A 【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果. 【详解】因为,,且与的夹角为, 所以, 因此. 故选:A. 11、D 【解析】设出未知数,根据题意列出方程即可解出. 【详解】设束上等稻禾是斗,束中等稻禾是斗,束下等稻禾是斗, 则由题可得,解得, 所以束上等稻禾是斗. 故选:D. 12、C 【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解 【详解】因为:, 所以:, 所以:, 即点P在线段AC上, 故选C. 【点睛】本题考查了平面向量的加减运算及向量共线,属简单题. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】利用求解向量间的夹角即可 【详解】因为,所以, 因为,所以, 即, 所以, 所以, 因为向量夹角取值范围是, 所以向量与向量的夹角为 【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意 14、 【解析】结合扇形的面积公式即可求出圆心角的大小. 【详解】解:设圆心角为,半径为,则,由题意知,,解得, 故答案为: 15、 【解析】利用对数的运算法则即可得出 【详解】解:原式lg0.12 =2+2lg10﹣1 =2﹣2 故答案为 【点睛】本题考查了对数的运算法则,属于基础题 16、4050 【解析】设每辆车的月租金定为元,则租赁公司的月收益: 当时, 最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为. 【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、 (Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ). 【解析】(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围. 试题解析:(Ⅰ)由题设,需,∴,∴, 经验证,为奇函数,∴. (Ⅱ)减函数 证明:任取,,且,则, ∵ ∴ ∴,; ∴,即 ∴该函数在定义域上减函数. (Ⅲ)由得, ∵是奇函数,∴, 由(Ⅱ)知,是减函数 ∴原问题转化为,即对任意恒成立, ∴,得即为所求. (Ⅳ)原函数零点的问题等价于方程 由(Ⅱ)知,,即方程有解 ∵, ∴当时函数存在零点. 点睛:利用函数性质解不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内. 18、(1);(2);(3),. 【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围 【详解】解:(1)由,有,解得x≤﹣2或x>3 ∴A=(-∞, -2]∪(3, +∞) (2)t>2, 当且仅当t=5时取等号,故 即为:且a>0 ∴,解得 故B={x| } (3)b<0,A∩B=A,有A⊆B,而 可得: a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去 a>0时,解得:或但不满足A⊆B,舍去 a<0时,解得或 ∵A⊆B ∴,解得 ∴a、b 的取值范围是a∈,b∈ (- 4,0). 【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题. 19、(1)最小正周期为,最大值. (2)单调减区间为,单调增区间为 【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式以及正弦函数的有界性可求得结果; (2)求得,利用余弦型函数的基本性质可求得函数的增区间和减区间. 小问1详解】 解:. 所以,的最小正周期. 当时,取得最大值 【小问2详解】 解:由(1)知, 又, 由,解得, 所以,函数的单调增区间为. 由,解得. 所以,函数的单调减区间为. 20、(1)见解析;(2). 【解析】(1)直接利用诱导公式化简即可; (2)由求出,代入即可求解. 【详解】(1) (2)因为为第二象限角,且, 所以, 所以. 21、(1);(2) 【解析】(1)推导出的坐标,由此能求出; (2)设,则,且,解得,,从而,,由此能求出 【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点 在的反向延长线上,所以 , ; (2)当时,设,则,且, 解得,,或,, 则,或,, .或 故 22、(1)答案见解析(2)答案见解析 【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域 【详解】图象如图所示 (2)定义域为或或, 增区间为,减区间为,,,, 值域为- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江省 大兴安岭 漠河县 高中 2022 2023 学年 高一上 数学 期末 达标 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文