甘肃省徽县第三中学2022-2023学年高一上数学期末考试模拟试题含解析.doc
《甘肃省徽县第三中学2022-2023学年高一上数学期末考试模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省徽县第三中学2022-2023学年高一上数学期末考试模拟试题含解析.doc(15页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则 A. B. C. D. 2.已知偶函数在区间单调递减,则满足的x取值范围是 A. B. C D. 3.有四个关于三角函数的命题: :xR, +=: x、yR, sin(x-y)=sinx-siny : x=sinx : sinx=cosyx+y= 其中假命题的是 A., B., C., D., 4.已知定义在上的函数满足,则() A. B. C. D. 5.设函数,,则是( ) A.最小正周期为的偶函数 B.最小正周期为的奇函数 C.最小正周期为的偶函数 D.最小正周期为的奇函数 6.图(1)是某条公共汽车线路收支差额关于乘客量的图象,图(2)、(3)是由于目前本条路线亏损,公司有关人员提出的两种扭亏为盈的建议,则下列说法错误的是() A.图(1)的点的实际意义为:当乘客量为0时,亏损1个单位 B.图(1)的射线上的点表示当乘客量小于3时将亏损,大于3时将盈利 C.图(2)的建议为降低成本而保持票价不变 D.图(3)的建议为降低成本的同时提高票价 7.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是() A.x+y+3=0 B.2x-y-5=0 C.3x-y-9=0 D.4x-3y+7=0 8.素数也叫质数,部分素数可写成“”的形式(是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“”形式(是素数)的素数称为梅森素数.2018年底发现的第个梅森素数是,它是目前最大的梅森素数.已知第个梅森素数为,第个梅森素数为,则约等于(参考数据:)() A. B. C. D. 9.已知全集,集合,,则( ) A.{2,3,4} B.{1,2,4,5} C.{2,5} D.{2} 10.已知函数是定义域上的递减函数,则实数a的取值范围是( ) A. B. C. D. 11.已知则() A. B. C. D. 12.已知函数是定义在上的偶函数,且在上是减函数,若, , ,则, , 的大小关系为( ) A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.在上,满足的取值范围是______. 14.已知函数是定义在上的奇函数,且,则________,________. 15.已知定义在上的偶函数,当时,,则________ 16.表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发3 h,晚到1 h; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发1.5 h后追上了骑自行车者; ④骑摩托车者在出发1.5 h后与骑自行车者速度一样 其中,正确信息的序号是________ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.已知. (1)化简,并求的值; (2)若,求的值 18.函数的部分图象如图所示. (1)求函数f(x)的解析式; (2)当x∈[-2,2]时,求f(x)的值域. 19.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点. (1)求的值; (2)求旳值. 20.如图,在三棱锥中,. (1)画出二面角的平面角,并求它的度数; (2)求三棱锥的体积. 21.已知函数,其中,. (1)若,求函数的最大值; (2)若在上的最大值为,最小值为,试求,的值. 22.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体 (1)求证:; 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、A 【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可 【详解】由三角函数定义得tan,即,得3cos解得或(舍去) 故选A 【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题 2、D 【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案 【详解】根据题意,偶函数在区间单调递减,则在上为增函数, 则, 解可得:, 即x的取值范围是; 故选D 【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题 3、A 【解析】故是假命题;令但故是假命题. 4、B 【解析】分别令,,得到两个方程,解方程组可求得结果 【详解】∵, ∴当时,,①, 当时,,②, ,得,解得 故选:B 5、D 【解析】通过诱导公式,结合正弦函数的性质即可得结果. 【详解】,所以,, 所以则是最小正周期为的奇函数, 故选:D. 6、D 【解析】根据一次函数的性质,结合选项逐一判断即可. 【详解】A:当时,,所以当乘客量为0时,亏损1个单位,故本选项说法正确; B:当时,,当时,,所以本选项说法正确; C:降低成本而保持票价不变,两条线是平行,所以本选项正确; D:由图可知中:成本不变,同时提高票价,所以本选项说法不正确, 故选:D 7、C 【解析】两圆公共弦的垂直平分线的方程即为两圆圆心所在直线的方程,求出两圆的圆心,从而可得答案. 【详解】解:AB的垂直平分线的方程即为两圆圆心所在直线的方程, 圆x2+y2-4x+6y=0的圆心为, 圆x2+y2-6x=0的圆心为, 则两圆圆心所在直线的方程为,即3x-y-9=0. 故选:C. 8、C 【解析】根据两数远远大于1, 的值约等于,设,运用指数运算法则,把指数式转化对数式,最后求出的值. 【详解】因为两数远远大于1,所以的值约等于,设, 因此有. 故选C 【点睛】本题考查了数学估算能力,考查了指数运算性质、指数式转化为对数式,属于基础题. 9、B 【解析】 分析】 根据补集的定义求出,再利用并集的定义求解即可. 【详解】因为全集, , 所以, 又因为集合, 所以, 故选:B. 10、B 【解析】由指数函数的单调性知,即二次函数是开口向下的,利用二次函数的对称轴与1比较,再利用分段函数的单调性,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围 【详解】函数是定义域上的递减函数, 当时,为减函数,故; 当时,为减函数,由,得,开口向下,对称轴为,即,解得; 当时,由分段函数单调性知,,解得; 综上三个条件都满足,实数a的取值范围是 故选:B. 【点睛】易错点睛:本题考查分段函数单调性,函数单调性的性质,其中解答时易忽略函数在整个定义域上为减函数,则在分界点处()时,前一段的函数值不小于后一段的函数值,考查学生的分析能力与运算能力,属于中档题. 11、D 【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β) 【详解】∵ ∴ ∴, ∴, ∴ 故选:D 12、B 【解析】分析:利用函数的单调性即可判断. 详解:因为函数为偶函数且在(−∞,0)上单调递减,所以函数在(0,+∞)上单调递增,由于,所以. 故选B. 点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】结合正弦函数图象可知时,结合的范围可得到结果. 【详解】 本题正确结果: 【点睛】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合. 14、 ①.1 ②.0 【解析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可. 【详解】因为满足,且,且其为奇函数, 故; 又,故可得, 又函数是定义在上的奇函数,故,又, 故. 故答案为:1;0. 15、6 【解析】利用函数是偶函数,,代入求值. 【详解】是偶函数, . 故答案6 【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型. 16、①②③ 【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误 故答案为①②③. 点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1), (2) 【解析】(1)利用三角函数诱导公式将化简,将代入求值即可; (2)利用将变形为,继而变形为,代入求值即可. 小问1详解】 则 【小问2详解】 由(1)知, 则 18、(1);(2) . 【解析】(1)由最大值求出,由周期求出,由求出,进而求得的解析式; (2)由的范围求得的范围,从而得到的范围,进而求得的值域. 【详解】(1)由图象可知,,, 由可得,又,所以, 所以. (2)当时,,所以, 故的值域为. 19、(1) (2) 【解析】(1)根据三角函数的定义可求得的值,再利用诱导公式结合同角的三角函数关系化简可得结果; (2)利用二倍角的余弦公式可直接求得答案. 【小问1详解】 由角的终边经过点, 可得,, 故; 小问2详解】 . 20、⑴⑵. 【解析】(1) 取中点,连接、,是二面角的平面角,进而求出此角度数即可;(2)利用等积法或割补法求体积. 试题解析: ⑴取中点,连接、, ,, , 且平面,平面, 是二面角平面角. 在直角三角形中, 在直角三角形中, 是等边三角形, ⑵解法1: , 又平面, 平面平面,且平面平面 在平面内作于,则平面, 即是三棱锥的高. 在等边中,, 三棱锥的体积 . 解法2: 平面 在等边中,的面积, 三棱锥的体积 . 21、(1)(2),. 【解析】(1)根据条件得对称轴范围,与定义区间位置关系比较得最大值(2)由得对称轴必在内,即得,且,解方程组可得,的值. 试题解析:解:抛物线的对称轴为, (1)若,即 则函数在为增函数, (2)①当时,即时, 当时, ,, , ,解得或(舍),,. ②当时,即时, 在上为增函数,与矛盾,无解, 综上得:,. 22、(1)证明见解析; (2). 【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可. (2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角. 【小问1详解】 取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形 ∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC 【小问2详解】 连接GA,GC, ∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC, 又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线 ∴S△ABC=×|AC|×|BC|=×6×6=18, ∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2 在Rt△DGF中,|GF|= 以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2), ∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2), 设平面DAC的法向量为=(x,y,z), 则,得,令z=1,得:, 于是,.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 甘肃省 徽县 第三中学 2022 2023 学年 高一上 数学 期末考试 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文